Keyword: operation
Paper Title Other Keywords Page
MOA1I1 Beam Performance with the LHC Injectors Upgrade brightness, injection, emittance, target 1
 
  • G. Rumolo, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, C. Antuono, T. Argyropoulos, F. Asvesta, M.J. Barnes, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, C. Bracco, N. Bruchon, E. Carlier, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, R. Garoby, S.S. Gilardoni, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, G. Iadarola, V. Kain, I. Karpov, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, E.H. Maclean, D. Manglunki, I. Mases Solé, M. Meddahi, L. Mether, B. Mikulec, E. Montesinos, Y. Papaphilippou, G. Papotti, K. Paraschou, C. Pasquino, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, F. Roncarolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, L. Sito, P.K. Skowroński, A. Spierer, R. Steerenberg, M. Sullivan, F.M. Velotti, R. Veness, C. Vollinger, R. Wegner, C. Zannini, E. de la Fuente
    CERN, Meyrin, Switzerland
  • T. Prebibaj
    IAP, Frankfurt am Main, Germany
 
  The LHC Injectors Upgrade (LIU) project was put in place between 2010 and 2021 to increase the intensity and brightness in the LHC injectors to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2040). During the 2019-2020 CERN accelerators shutdown, extensive hardware modifications were implemented in the entire LHC proton and ion injection chains, involving the new Linac4, the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the Super Proton Synchrotron (SPS) and the ion PS injectors, i.e. the Linac3 and the Low Energy Ion Ring (LEIR). Since 2021, beams have been recommissioned throughout the injectors’ chain and the beam parameters are being gradually ramped up to meet the LIU specifications using new beam dynamics solutions adapted to the upgraded accelerators. This paper focuses on the proton beams and describes the current state of the art.  
slides icon Slides MOA1I1 [10.002 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA1I1  
About • Received ※ 29 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA1I2 FRIB from Commissioning to Operation linac, target, emittance, experiment 9
 
  • P.N. Ostroumov, K. Fukushima, A.J. Gonzalez, K. Hwang, T. Kanemura, T. Maruta, A.S. Plastun, J. Wei, T. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan, and Michigan State University.
The Facility for Rare Isotope Beams (FRIB) was fully commissioned in early 2022, and the operation for physics experiments started shortly thereafter. Various ion beam species have been accelerated up to 240 MeV/u and delivered to the target. During the first year of user operations, the FRIB provided 4252 beam hours with 91% availability for nuclear science. In addition, FRIB delivered about 1000 hours of various ion beam species at beam energies up to 40 MeV/u for single-event experiments. Typically, the experiments with a specific species rare isotope beam last a week or two. Each experiment requires a different primary beam species with specific energies. The primary beam power has been gradually increased from 1 kW to 10 kW over the past 1.5 years. The Accelerator Physics (AP) group develops high-level physics applications to minimize machine set-up time. Focuses include identifying beam halo sources, controlling emittances of multiple-charge-state beams, and studying the beam loss mechanisms to prepare for the ultimate 400 kW operation. This paper discusses the experience and challenges of operating a high-power CW heavy ion accelerator.
 
slides icon Slides MOA1I2 [6.556 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA1I2  
About • Received ※ 22 September 2023 — Accepted ※ 10 October 2023 — Issued ※ 17 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA3I3 High-Power Targetry and the IMPACT Initiative at Paul Scherrer Institute target, radiation, proton, lattice 30
 
  • D.C. Kiselev
    PSI, Villigen PSI, Switzerland
 
  The main challenges to operate a high-power target are dissipation of the heat and radiation damage. The latter refers to the damage of the material. Since the breakdown of the material depends on the operation temperature and other conditions, like the material treatment before irradiation, it is difficult to predict. To reduce failures, target operation parameters and beam properties have to be monitored carefully. After the failure of the neutron spallation target (SINQ) in 2016, several improvements in the HIPA (High intensity Proton Accelerator) beam line at PSI and the target installation were implemented. However, MW beams are not a prerequisite for the need of high power targets. This is the case at one of the two new target stations within the IMPACT initiative at PSI. One target station will produce radionuclides for research in cancer therapy, while the other will improve the surface muon rate by a factor of 100 for experiments in particle and material physics. In this presentation, strategies for successful operation of high-power targets are shown. Furthermore, the IMPACT initiative at PSI, with focus on the two planned target stations, will be presented.  
slides icon Slides MOA3I3 [4.909 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I3  
About • Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 20 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA1C1 Major Longitudinal Impedance Sources in the J-PARC Main Ring impedance, septum, cavity, kicker 53
 
  • A. Kobayashi
    KEK, Tokai, Ibaraki, Japan
 
  Beam intensity upgrade is ongoing at the J-PARC main ring. The beam instability is controlled by feedback systems in both longitudinal and transverse directions respectively. However, in recent years, microbunch structures have been observed during debunching, inducing electron cloud and transverse beam instability, which has become a problem. It is essential to identify the cause and take countermeasures. A summary of model and measurement comparisons will be reported for the major impedances RF-cavities, FX-septa, and FX-kickers. Of the five septa, two have been subjected to impedance reduction measures. The remaining three septa are of different types, but similar measures are planning.  
slides icon Slides TUA1C1 [26.758 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA1C1  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC1I1 Multi-beam Operation of LANSCE Accelerator Facility proton, linac, emittance, alignment 58
 
  • Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
 
  The unique feature of the LANSCE accelerator facility is the simultaneous delivering of beams to five experimental targets. Proton beam with energy of 100-MeV is delivered to Isotope Production Facility (IPF), while 800-MeV H⁻ beams are distributed to four experimental areas: the Lujan Neutron Scattering Center, the Weapons Neutron Research facility (WNR), the Proton Radiography facility (pRad), and the Ultra-Cold Neutron facility (UCN). Multi-beam operation of accelerator facility requires careful optimization of beam losses, which is achieved by precise tuning of the beam, imposing restriction on amplitudes and phases of RF sections, application of beam-based alignment, control of H⁻ beam stripping, optimization of ion sources performance and low-energy beam transport operation under space-charge neutralization. The near - term plans are to replace obsolete systems of the LANSCE linear accelerator with modern Front End, which is the part of Los Alamos Modernization Project (LAMP). This paper summarizes experimental results obtained during operation of LANSCE accelerator facility and considers plans to expand performance of the accelerator for near-and long-term operations.  
slides icon Slides TUC1I1 [10.013 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC1I1  
About • Received ※ 30 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC2I2 SNS Linac Beam Dynamics: What We Understand, and What We Don’t cavity, linac, MEBT, DTL 91
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
At this moment, the Spallation Neutron Source linac accelerates H⁻ ions to 1.05 GeV before they injected into the ring. The beam power on the target is 1.7 MW. The linac includes three main parts - a front-end with ion source, RFQ, and Medium Energy Beam Transport (MEBT) section; a normal temperature linac with Drift Tube Linac (DTL) and Coupled Cavities Linac (CCL); and superconducting linac (SCL). The linac has been in operation since it was commissioned in 2005. This talk discusses the results of beam dynamics studies, existing diagnostic devices, simulation codes and models used in analysis, development and results of linac tuning procedures, and beam loss reduction efforts performed at the SNS linac for 18 years. Considerations about future beam physics experiments and simulations software improvements are presented.
 
slides icon Slides TUC2I2 [1.814 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC2I2  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC2C1 Beam Physics Simulation Studies of 70 Mev ISIS Injector Linac linac, simulation, MEBT, DTL 97
 
  • S.A. Ahmadiannamin, H.V. Cavanagh, S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS neutron spallation source is a pioneering research infrastructure in the field of high intensity accelerator physics, catering to scientific users. Comprising a 70 MeV injector linac and an 800 MeV Rapid cycling synchrotron with two beam targets, this facility has witnessed significant upgrades in recent years, leading to enhanced transmission efficiency. Further optimization efforts are underway to ensure continuous improvement. This article focuses on beam physics simulation studies conducted on the current ISIS linac, aiming to gain a deeper understanding and analysis of various phenomena observed during routine operations and accelerator physics experimentation. By examining these phenomena, valuable insights can be obtained to inform the future development of high efficiency injector of ISIS-II.  
slides icon Slides TUC2C1 [6.467 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC2C1  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I1 SPIRAL2 Commissioning and Operations linac, cavity, MMI, experiment 106
 
  • A.K. Orduz, M. Di Giacomo, J.-M. Lagniel, G. Normand
    GANIL, Caen, France
  • D.U. Uriot
    CEA-DRF-IRFU, France
 
  The SPIRAL2 linac is now successfully commissioned; H⁺, 4He2+, D⁺ and 18O6+ have been accelerated up to nominal parameters and 18O7+ and 40Ar14+ beams have been also accelerated up to 7 MeV/A. The main steps with 5 mA H⁺, D⁺ beams and with 0.6 mA 18O6+ are described. The general results of the commissioning of the RF, cryogenic and diagnostics systems, as well as the preliminary results of the first experiments on NFS are presented. In addition of an improvement of the matching to the linac, the tuning procedures of the 3 Medium Energy Beam Transport (MEBT) rebunchers and 26 linac SC cavities were progressively improved to reach the nominal parameters in operation, starting from the classical ¿signature matching method¿. The different cavity tuning methods developed to take into account our particular situation (very low energy and large phase extension) are described. The tools developed for an efficient linac tuning in operation, e.g. beam energy and intensity changes are also discussed.  
slides icon Slides TUA3I1 [9.358 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I1  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I2 Measurements of Momentum Halo Due to the Reduced RFQ Voltage During the LIPAc Beam Commissioning rfq, MMI, simulation, cryomodule 112
 
  • K. Hirosawa, A. De Franco, K. Hasegawa, K. Kondo, S. Kwon, K. Masuda, A. Mizuno, M. Sugimoto
    QST Rokkasho, Aomori, Japan
  • F. Bénédetti
    CEA-DRF-IRFU, France
  • Y. Carin, H. Dzitko, D. Gex, I. Moya, F. Scantamburlo
    F4E, Germany
  • J.C. Morales Vega
    Consorcio IFMIF-DONES España, Granada, Spain
  • I. Podadera
    CIEMAT, Madrid, Spain
 
  The Linear IFMIF Prototype Accelerator, LIPAc, is being commissioned aiming in particular at validating the RFQ up to 5MeV beam acceleration. Eventually, the nominal beam of 5 MeV-125 mA in 1 ms/1 Hz pulsed mode was achieved in 2019. The beam operation has been resumed since July 2023 after long maintenance including recovery from unexpected problems in the RFQ RF system. This new phase aims at the commissioning of the full configuration except SRF linac, which is replaced by a temporary beam transport line. Focusing on the RFQ behavior, it will be interesting to operate it at higher duty especially for longer pulses. Indeed, a beam simulation study suggested that the beam extracted from the RFQ includes considerable momentum halo when the RFQ voltage reduces by a few percent, with a slight decrease of mean energy. It can be a potential source of quench like the mismatched beam in the cryomodule. This could be studied measuring the energy from the Time-of-Flight among multiple BPMs while monitoring beam loss around the dipole, where momentum halo should be lost. During the upcoming commissioning, we propose to study them by scanning the RFQ voltage.  
slides icon Slides TUA3I2 [4.465 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I2  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I2 Shaping High Brightness and Fixed Target Beams with the CERN PSB Charge Exchange Injection injection, emittance, target, brightness 135
 
  • C. Bracco, S.C.P. Albright, F. Asvesta, G.P. Di Giovanni, F. Roncarolo
    CERN, Meyrin, Switzerland
 
  CERN adopted the charge exchange injection technique for the first time in the PS Booster after Long Shutdown 2. This allowed to overcome space charge limitations, tailor high brightness beams for the LHC and deliver high intensity flux of protons to the fixed target experiments. Details on the concept, physics, hardware and diagnostic tools are presented while retracing the exciting steps of the successful commissioning period and the first years of operation with this system. A look to the future is taken by explaining the next stages to achieve the ambitious Luminosity targets foreseen for the HL-LHC era.  
slides icon Slides TUC3I2 [19.053 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I2  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA4I2 1-MW Beam Operation at J-PARC RCS with Minimum Beam Loss injection, simulation, beam-losses, scattering 147
 
  • P.K. Saha, H. Harada, H. Hotchi, K. Okabe, H. Okita, Y. Shobuda, F. Tamura, K. Yamamoto, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The 3-GeV RCS of J-PARC now operates at high-intensity to nearly the designed 1 MW beam. The beam loss and the corresponding residual radiation is one of the key limitations against beam intensity ramp up. Recently, by a series of beam studies and feedback from numerical simulations, we have well mitigated the beam loss to a minimum level and also reduced the beam emittances for beam operation to the spallation neutron source as well as to the main ring. The residual beam loss at the designed 1 MW beam power occurs mostly due to the unavoidable foil scattering beam loss during multi-turn injection, while other beam loss sources have been well mitigated to realize a stable and higher availability beam operation at a nearly 1 MW beam power.  
slides icon Slides TUA4I2 [2.303 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA4I2  
About • Received ※ 02 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA4C1 Recent Progress in Loss Control for the ISIS High-Intensity RCS: Geodetic Modelling, Tune Control, and Optimisation controls, lattice, survey, quadrupole 153
 
  • H. Rafique, E.K. Bansal, H.V. Cavanagh, C.M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS operates a high intensity 50 Hz rapid cycling synchrotron (RCS), accelerating up to 3 x 1013 protons from 70 to 800 MeV. Protons are delivered to one muon and two neutron targets over two target stations, totalling 0.2 MW of beam power, enabling around 1000 experiments for approximately 3500 users a year. Minimisation of beam loss and optimisation of its control are central to achieving the best facility performance with minimal machine activation. We summarise recent work aimed at improving loss control in the RCS. Using geodetic survey data we aim to develop lattice models with realistic magnet alignment errors in cpymad. Building on recent measurement campaigns a new and improved system of tune control has been developed and verified using enhanced lattice models with cpymad. More rigorous and quantitative measures of beam loss have been implemented in graphical user interfaces (GUIs) using the QT GUI toolkit python interface PyQT5, and streaming data using the messaging protocol MQTT, in order to optimise loss control.  
slides icon Slides TUA4C1 [6.044 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA4C1  
About • Received ※ 28 September 2023 — Revised ※ 13 October 2023 — Accepted ※ 16 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1C1 Bunch-by-bunch Tune Shift Studies for LHC-type Beams in the CERN SPS simulation, impedance, injection, wakefield 194
 
  • I. Mases Solé, H. Bartosik, K. Paraschou, M. Schenk, C. Zannini
    CERN, Meyrin, Switzerland
 
  After the implementation of major upgrades as part of the LHC Injector Upgrade Project (LIU), the Super Proton Synchrotron (SPS) delivers high intensity bunch trains with 25 ns bunch spacing to the Large Hadron Collider (LHC). These beams are exposed to several collective effects in the SPS, such as beam coupling impedance, space charge and electron cloud, leading to relatively large bunch-by-bunch coherent and incoherent tune shifts. Tune correction to the nominal values at injection is crucial to ensure beam stability and good beam transmission. Measurements of the bunch-by-bunch coherent tune shifts have been performed under different beam conditions. In this paper, we present the measurements of the bunch-by-bunch tune shift as function of bunch intensity for trains of 72 bunches. The experimental data are compared to multiparticle tracking simulations (including other beam variants such as 8b4e beam and hybrid beams) using the SPS impedance model.  
slides icon Slides WEA1C1 [2.613 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA1C1  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 09 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC1I1 Radiation Hardened Beam Instrumentations for Multi-Mega-Watt Beam Facilities target, proton, radiation, instrumentation 199
 
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  A beam instrumentation is an essential element to successfully operate an accelerator machine in which various diagnostic and beam control system are integrated. However, the beam instrumentation performance is often constrained by a prompt radiation dose, integrated radiation dose, operation (ambient) temperature and humidity, available space, and strength of embedded electromagnetic fields at the monitor. These constraints will limit the dynamic range of operational beam parameters, like the maximum achievable beam power. A seamless R&D effort to develop the radiation hardened beam instrumentations has been made for future multi-MW beam facilities. In this presentation, I will show a major beam facility and beam instrumentation which runs or plans a MW beam operation in the near future.  
slides icon Slides WEC1I1 [2.739 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1I1  
About • Received ※ 20 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 12 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2I1 Compensation of Third-order Resonances in the High Intensity Regime resonance, sextupole, space-charge, experiment 215
 
  • C.E. Gonzalez-Ortiz
    MSU, East Lansing, Michigan, USA
  • R. Ainsworth
    Fermilab, Batavia, Illinois, USA
  • P.N. Ostroumov
    FRIB, East Lansing, Michigan, USA
 
  As the Fermilab Accelerator Complex enters the high-intensity era, the Recycler Ring (RR) needs to mitigate the detrimental effect of third-order resonance crossing. Third-order resonance lines can be compensated to first order by cancelling out the global Resonance Driving Terms (RDTs) using the response matrix method. This compensation scheme has been proven to work at low intensities, i.e., in the single-particle regime. In order to evaluate the effectiveness of this compensation scheme at higher intensities, this study looks at dynamic and static tune scans, with and without resonance compensation, and different space charge tune shifts. Special care was taken in order to disentangle effects from space charge tune shift, structure resonances and space charge driven resonances.  
slides icon Slides WEA2I1 [6.714 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA2I1  
About • Received ※ 02 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 09 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA2I2 Space Charge Induced Resonances and Suppression in J-PARC MR resonance, optics, space-charge, simulation 222
 
  • T. Yasui
    KEK, Tokai, Ibaraki, Japan
 
  In the main ring synchrotron (MR) of Japan Proton Accelerator Research Complex (J-PARC), space charge induced resonances are the cause of beam losses. Although we have scanned the tunes to minimize beam losses, it has been difficult to completely avoid high order structure resonances because the MR has only three super-periodicities. In the present settings for the neutrino operation, we identified that the space charge induced resonance 8ny=171 is the main source of beam losses, except for random resonances. We found that this resonance can be suppressed by beam optics modification while maintaining the tune. In this talk, we present the theoretical, simulation, and experimental results showing the advantages of the new beam optics and the reasons for them.  
slides icon Slides WEA2I2 [6.189 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA2I2  
About • Received ※ 07 November 2023 — Accepted ※ 18 November 2023 — Issued ※ 29 November 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC2C1 Evaluation of Power Deposition in HL-LHC with Crystal-assisted Heavy Ion Collimation collimation, heavy-ion, simulation, betatron 236
 
  • V. Rodin, R. Bruce, R. Cai, M. D’Andrea, L.S. Esposito, A. Lechner, J.B. Potoine, S. Redaelli, J. Schoofs
    CERN, Meyrin, Switzerland
  • R. Cai
    EPFL, Lausanne, Switzerland
  • J.B. Potoine
    IES, Montpellier, France
 
  The future LHC heavy-ion program, utilizing 208Pb82+ beams at up to 7 Z TeV, is anticipated to operate with substantial intensity upgrade. During periods of short beam lifetime, a potential performance limitation may arise from secondary ions produced by electromagnetic dissociation and hadronic fragmentation in the collimators of the betatron cleaning insertion. These off-rigidity fragments risk quenching superconducting magnets when they are lost in the dispersion suppressor. To address this concern, an alternative collimation scheme will be introduced for forthcoming heavy ion runs, employing bent channeling crystals as primary collimators. In this contribution, we detail a thorough study of power deposition levels in superconducting magnets through FLUKA shower simulations in the crystal-based collimation system. The study focuses on the downstream dispersion suppressor regions of the betatron cleaning insertion, where the quench risk is the highest. Based on this work, we quantify the expected quench margin in future runs with 208Pb82+ beams, providing crucial insights for the successful execution of the upgraded heavy-ion program at the HL-LHC.
Research supported by the HL-LHC project.
 
slides icon Slides WEC2C1 [3.105 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC2C1  
About • Received ※ 24 November 2023 — Revised ※ 25 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 16 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA3C3 Differential Algebra for Accelerator Optimization with Truncated Green’s Function space-charge, simulation, framework, multipole 254
 
  • C.S. Park
    Korea University Sejong Campus, Sejong, Republic of Korea
 
  Accelerator optimization is a critical problem in the design of high-performance particle accelerators. The truncated Green’s function space charge algorithm is a powerful tool for simulating the effects of space charge in accelerators. However, the truncated Green’s function algorithm can be computationally expensive, especially for large accelerators. In this work, we present a new approach to accelerator optimization using differential algebra with the truncated Green’s function space charge algorithm. Our approach uses differential algebra to symbolically represent the equations of the truncated Green’s function algorithm. This allows us to perform efficient symbolic analysis of the equations, which can be used to identify and optimize the accelerator parameters. We demonstrate the effectiveness of our approach by applying it to the optimization of a linear accelerator. We show that our approach can significantly reduce the computational cost of the truncated Green’s function algorithm, while still achieving high accuracy.  
slides icon Slides WEA3C3 [0.772 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA3C3  
About • Received ※ 28 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 14 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C1 Beyond 1-MW Scenario in J-Parc Rapid-Cycling Synchrotron cavity, acceleration, linac, injection 270
 
  • K. Yamamoto, T. Morishita, K. Moriya, H. Okita, P.K. Saha, Y. Shobuda, F. Tamura, I. Yamada, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The 3-GeV rapid cycling synchrotron at the Ja-pan Pro-ton Accelerator Research Complex was designed to provid 1-MW proton beams to the Material and Life Sci-ence Experimental Facility and Main Ring. Thanks to the improvement works of the accelerator system, we success-fully accelerate 1-MW beam with quite small beam loss. Currently, the beam power of RCS is limited by the lack of anode current in the RF cavity system rather than the beam loss. Recently we developed a new acceleration cavity that can accelerate a beam with less anode current. This new cavity enables us not only to reduce require-ment of the anode power supply but also to accelerate more than 1-MW beam. We have started to consider the way to achieve beyond 1-MW beam acceleration. So far, it is expected that up to 1.5-MW beam can be accelerated after replacement of the RF cavity. We have also contin-ued study to achieve more than 2 MW beam in J-PARC RCS.  
slides icon Slides WEC3C1 [2.787 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C1  
About • Received ※ 25 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA4C1 Beam Loss Studies in the CSNS Linac linac, DTL, emittance, lattice 297
 
  • J. Peng, X.Y. Feng, Y. Han, H.C. Liu, X.B. Luo
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • S. Fu, M.Y. Huang, Y. Li, Z.P. Li, X. Liu, S. Wang, Y. Yuan
    IHEP, Beijing, People’s Republic of China
  • S.Y. Xu
    DNSC, Dongguan, People’s Republic of China
 
  The China Spallation Neutron Source¿CSNS¿accelerator comprises an 80MeV linac and a 1.6GeV rapid cycling synchrotron. It started operation in 2018, and the beam power delivered to the target has increased from 20kW to 140kW, step by step. Various beam loss studies have been performed through the accelerator to improve the beam power and availability. For the CSNS linac, the primary source of the beam loss is the halo generated by beam mismatches. In the upgrade plan of the CSNS, the beam current will increase five times, which requires more strict beam loss control. Much work is done during the design phase to keep the loss down to 1W/m of loss limit. This paper will report results obtained from beam experiments and optimization methods applied to the CSNS linac upgrade design.  
slides icon Slides WEA4C1 [3.736 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA4C1  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4I1 RF Systems of J-PARC Proton Synchrotrons for High-Intensity Longitudinal Beam Optimization and Handling cavity, feedback, controls, acceleration 305
 
  • F. Tamura, R. Miyakoshi, M. Nomura, H. Okita, T. Shimada, M. Yamamoto
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Hara, K. Hasegawa, C. Ohmori, K. Seiya, Y. Sugiyama, M. Yoshii
    KEK, Tokai, Ibaraki, Japan
 
  The application of magnetic alloy (MA) cores to the accelerating rf cavities in high intensity proton synchrotrons was pioneered for the J-PARC synchrotrons, the RCS and MR. The MA loaded cavities can generate high accelerating voltages. The wideband frequency response of the MA cavity enables the frequency sweep to follow the velocity change of protons without the tuning loop. The dual harmonic operation, where a single cavity is driven by the superposition of the fundamental and second harmonic rf voltages, is indispensable for the longitudinal bunch shaping to alleviate the space charge effects in the RCS. These advantages of the MA cavity are also disadvantages when looking at them from a different perspective. Since the wake voltage consists of several harmonics, which can cause bucket distortion or coupled-bunch instabilities, the beam loading compensation must be multiharmonic. The operation of tubes in the final stage amplifier is not trivial when accelerating very high intensity beams; the output current is high and the anode voltageis also multiharmonic. We summarize our effort against these issues in the operation of the RCS and MR for more than 10 years.  
slides icon Slides WEC4I1 [6.932 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4I1  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4C1 Magnetic Alloy Loaded Cavities in J-PARC and CERN cavity, booster, synchrotron, proton 316
 
  • C. Ohmori
    KEK, Ibaraki, Japan
  • M.M. Paoluzzi
    CERN, Meyrin, Switzerland
 
  Funding: This work was supported by JSPS KAKENHI Grant Number 19KK0078 and 18K11930.
Magnetic Alloy loaded cavities have been used in seven synchrotrons in J-PARC and CERN. In this paper, we will review variety of the cavity technologies to satisfy the requirements for the beam acceleration, deceleration, manipulation and instability damping. This paper also contains improvements of cavity cores by magnetic annealing scheme, quality control of cores during production, the cooling methods of magnetic alloy cores: direct water cooling and indirect one using copper discs, control of cavity bandwidths from broad to narrow bands, and the ways to drive RF cavities by tube and rad-hard solid-state amplifiers.
 
slides icon Slides WEC4C1 [3.371 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C1  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1I2 High-Intensity Studies on the ISIS RCS and Their Impact on the Design of ISIS-II simulation, space-charge, controls, impedance 331
 
  • R.E. Williamson, D.J. Adams, H.V. Cavanagh, B.S. Kyle, D.W. Posthuma de Boer, H. Rafique, C.M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the pulsed spallation neutron and muon source at the Rutherford Appleton Laboratory in the UK. Operation centres on a rapid cycling proton synchrotron (RCS) that accelerates 3·1013 protons per pulse from 70 MeV to 800 MeV at 50 Hz, delivering a mean beam power of 0.2 MW. As a high-intensity machine, research at ISIS is predominantly focused on understanding, minimising and controlling beam-loss, which is central to sustainable machine operation. Knowledge of beam-loss mechanisms then informs the design of future high power accelerators such as ISIS-II. This paper provides an overview of the R&D studies currently underway on the ISIS RCS and how these relate to ongoing work understanding and optimising designs for ISIS-II. In particular, recent extensive investigations into observed head-tail instabilities are summarised.  
slides icon Slides THA1I2 [10.825 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1I2  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC1I2 FRIB Beam Power Ramp-up: Status and Plans target, controls, linac, MMI 351
 
  • J. Wei, C. Alleman, H. Ao, B. Arend, D.J. Barofsky, S. Beher, G. Bollen, N.K. Bultman, F. Casagrande, W. Chang, Y. Choi, S. Cogan, P. Cole, C. Compton, M. Cortesi, J.C. Curtin, K.D. Davidson, X.J. Du, K. Elliott, B. Ewert, A. Facco, A. Fila, K. Fukushima, V. Ganni, A. Ganshyn, T.N. Ginter, T. Glasmacher, J.W. Guo, Y. Hao, W. Hartung, N.M. Hasan, M. Hausmann, K. Holland, H.-C. Hseuh, M. Ikegami, D.D. Jager, S. Jones, N. Joseph, T. Kanemura, S.H. Kim, C. Knowles, T. Konomi, B.R. Kortum, N.V. Kulkarni, E. Kwan, T. Lange, M. Larmann, T.L. Larter, K. Laturkar, R.E. Laxdal, J. LeTourneau, S.M. Lidia, G. Machicoane, C. Magsig, P.E. Manwiller, F. Marti, T. Maruta, E.S. Metzgar, S.J. Miller, Y. Momozaki, D.G. Morris, M. Mugerian, I.N. Nesterenko, C. Nguyen, P.N. Ostroumov, M.S. Patil, A.S. Plastun, L. Popielarski, M. Portillo, A.L. Powers, J. Priller, X. Rao, M.A. Reaume, S.N. Rogers, K. Saito, B.M. Sherrill, M.K. Smith, J. Song, M. Steiner, A. Stolz, O. Tarasov, B.P. Tousignant, R. Walker, X. Wang, J.D. Wenstrom, G. West, K. Witgen, M. Wright, Y. Yamazaki, T. Zhang, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
  • Y. Momozaki
    ANL, Lemont, Illinois, USA
  • S.O. Prestemon, T. Shen
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
After project completion on scope, on cost, and ahead of schedule, the Facility for Rare Isotope Beams began operations for scientific users in May of 2022. The ramp-up to a beam power of 400 kW is planned over a six-year period; 1 kW was delivered for initial user runs from in 2022, and 5 kW was delivered as of February 2023. Test runs with 10 kW 36Ar and 48Ca beams were conducted in July 2023. Upgrade plans include doubling the primary-beam energy to 400 MeV/nucleon for enhanced discovery potential (¿FRIB 400¿). This talk reports on the strategic plans towards high power operations emphasizing challenges and resolutions in beam-interception devices and targetry systems, radiation protection and controls, and legacy system renovation and integration.
 
slides icon Slides THC1I2 [4.065 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THC1I2  
About • Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC1C1 Transverse Emittance Reconstruction Along the Cycle of the CERN Antiproton Decelerator emittance, electron, antiproton, proton 358
 
  • G. Russo, B. Dupuy, D. Gamba, L. Ponce
    CERN, Meyrin, Switzerland
 
  The precise knowledge of the transverse beam emittances on the different energy plateaus of the CERN Antiproton Decelerator (AD) ring is important for assessing the machine performance and beam quality. This paper presents a methodology for reconstructing transverse beam profiles from scraper measurements employing the Abel transform. The proposed methodology provides a precise, reproducible and user independent way of computing the beam emittance, as well as a useful tool to qualitatively track machine performance in routine operation. As discussed in this paper, its application has already been proven crucial for the operational setting-up of the stochastic cooling and for determining the proper functioning of the electron cooling in AD. It also opens up the possibility for detailed benchmarking studies of the cooling performance in different machine and beam conditions.  
slides icon Slides THC1C1 [2.426 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THC1C1  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC2C1 Shower Simulations for the CERN Proton Synchrotron Internal Dump and Comparison with Beam Loss Monitor Data simulation, proton, flattop, closed-orbit 389
 
  • S. Niang, L.S. Esposito, M. Giovannozzi, C. Hernalsteens, A. Huschauer, T. Pugnat
    CERN, Meyrin, Switzerland
  • D. Domange
    ULB, Bruxelles, Belgium
 
  During the Long Shutdown 2 (LS2), two new internal dumps (TDIs) were installed and successfully put into operation in the CERN Proton Synchrotron (PS) to withstand the intense and bright beams produced for the High Luminosity LHC. TDIs serve as safety devices designed to rapidly enter the beam trajectory and stop the beam over multiple turns. Due to their design, the TDI only absorbs a fraction of the secondary particle shower produced by beam particles that impinge on it. Starting from impacts computed by multi-turn beam dynamics simulations, detailed shower simulations were performed with FLUKA to assess the radiation field’s impact on the downstream equipment, with a particular emphasis on the dose measured by Beam Loss Monitors. The numerical data obtained from the simulations are compared with the experimental data collected during PS operation.  
slides icon Slides THC2C1 [2.092 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THC2C1  
About • Received ※ 28 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP04 Investigation of Tail-dominated Instability in the Fermilab Recycler Ring space-charge, diagnostics, emittance, coupling 403
 
  • O. Mohsen, R. Ainsworth, A.V. Burov
    Fermilab, Batavia, Illinois, USA
 
  In our recent operational run, a single bunch, tail-dominated instability was observed in the Fermilab Recycler ring. This instability exclusively occurs in the vertical plane when the chromaticity is close to zero. In this study, we conduct a detailed analysis of this instability under different operational parameters. We investigate the impact of space charge on the head-tail motion and propose potential interpretations of the underlying mechanism of the instability. Moreover, we explore methods to mitigate this instability in the future.  
slides icon Slides THAFP04 [1.429 MB]  
poster icon Poster THAFP04 [0.892 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP04  
About • Received ※ 25 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP10 Stripline Design of a Fast Faraday Cup for the Bunch Length Measurement at ISOLDE-ISRS ISOL, scattering, electron, impedance 426
 
  • S. Varnasseri, I. Bustinduy, P.J. González, R. Miracoli, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
 
  In order to measure the bunch length of the beam after Multi Harmonic Buncher (MHB) of ISOLDE Superconducting Recoil Separator (ISRS) and characterize the longitudinal structure of bunches of MHB, installation of a Fast Faraday Cup (FFC) is foreseen. Several possible structures of the fast faraday cup are studied and due to timing characteristics of the beam, a microstrip design is selected as the first option. The beam is collected on the biased collector of the microstrip with a matched impedance and transferred to the RF wideband amplification system. The amplified signal then can be analyzed on the wideband oscilloscope or acquisition system to extract the bunch length and bunch timing structure with precision. The design of the microstrip FFC and primary RF measurement of the prototype are discussed in this paper.  
slides icon Slides THAFP10 [2.832 MB]  
poster icon Poster THAFP10 [0.642 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP10  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP02 FFA Magnet for Pulsed High Power Proton Driver lattice, proton, software, closed-orbit 436
 
  • J.-B. Lagrange, C.W. Jolly, D.J. Kelliher, A.P. Letchford, S. Machida, I. Rodríguez, C.T. Rogers, J.D. Speed
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.J. Brooks
    BNL, Upton, New York, USA
  • T.-J. Kuo
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Fixed Field Alternating gradient (FFA) accelerator is considered as a proton driver for the next generation spallation neutron source (ISIS-II). To demonstrate its suitability for high intensity operation, an FFA proton prototype ring is planned at RAL, called FETS-FFA. The main magnets are a critical part of the machine, and several characteristics of these magnets require attention, such as doublet spiral structure, essential operational flexibility in terms of machine optics and control of the fringe field extent from the nonlinear optics point of view. This paper will discuss the design of the prototype magnet for FETS-FFA ring.  
poster icon Poster THBP02 [5.871 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP02  
About • Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP03 ESS-Bilbao RFQ Static Tuning Algorithm and Simulation rfq, cavity, simulation, neutron 440
 
  • J.L. Muñoz, I. Bustinduy, A. Conde, N. Garmendia, P.J. González, J. Martin, V. Toyos
    ESS Bilbao, Zamudio, Spain
 
  The ESS-Bilbao RFQ operates at 352.2 MHz. The machining of the four RFQ segments has finished and the assembly and tuning operations will follow shorly. The static tuning and field flatness are provided by an array of 60 plunger tuners, distributed along the 3.2 meters length of the structure. There are four tuners per segment per quadrant, except for one of the segments where the ports are used by the power couplers. A bead-pull setup will provide the measurements of the field profiles, that will be collected in a matrix built up with the contributions of individual tuners. The conventional approach of inverting the matrix to get the optimum tuners distribution is explored, as well as additional optimization method. Particularly, a genetic optimization algorithm provides a very succesful tuning of the RFQ. The solution provided by this approach will be used as the initial configuration of the tuners before the bead-pull measurements are carried out. Additionally, static and dynamic tuning of the RFQ is studied by high performance computing simulations of the RFQ. The analysis of the in-house computational electromagnetics suite used for these tasks is also discussed in this paper.  
poster icon Poster THBP03 [2.285 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP03  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP04 Machine Protection System for the Proposed TATTOOS Beamline at HIPA target, proton, cyclotron, diagnostics 443
 
  • J. Snuverink, P. Bucher, R. Eichler, M. Hartmann, D.C. Kiselev, D. Reggiani, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  IMPACT (Isotope and Muon Production with Advanced Cyclotron and Target Technology) is a proposed upgrade project for the High Intensity Proton Accelerator (HIPA) at the Paul Scherrer Institute (PSI). As part of IMPACT, a new radioisotope target station, TATTOOS (Targeted Alpha Tumour Therapy and Other Oncological Solutions) is planned. The TATTOOS beamline and target will be located near the UCN (Ultra Cold Neutron source) target area, branching off from the main UCN beamline. In particular, the 590 MeV proton beamline is designed to operate at a beam intensity of 100 ¿A (60 kW), requiring a continuous splitting of the main beam by an electrostatic splitter. The philosophy of the machine protection system (MPS) for the TATTOOS beamline will not differ significantly from the one already implemented for HIPA. However, it is particularly important for TATTOOS to avoid damage to the target due to irregular beam conditions. We will show the diagnostic systems involved and how the requirements of the machine protection system can be met. Emergency scenarios and protective measures are also discussed.  
poster icon Poster THBP04 [3.228 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP04  
About • Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP05 CERN SPS Dilution Kicker Vacuum Pressure Behaviour under Unprecedented Beam Brightness kicker, vacuum, brightness, flattop 447
 
  • F.M. Velotti, M.J. Barnes, W. Bartmann, H. Bartosik, E. Carlier, G. Favia, I. Karpov, K.S.B. Li, N. Magnin, L. Mether, V. Senaj, P. Van Trappen, C. Zannini
    CERN, Meyrin, Switzerland
 
  The Super Proton Synchrotron (SPS) is the second largest synchrotron at CERN and produces high-brightness beams for the Large Hadron Collider (LHC). Recently, the dilution kicker (MKDH) of the SPS beam dump system (SBDS) has demonstrated unanticipated behaviour under high beam brightness conditions. During the 2022 and 2023 beam commissioning, the MKDH, which is routinely pulsed at high voltage, was subjected to intensities of up to 288 bunches of 2·1011 protons per bunch and bunch lengths as low as 1.5 ns. Under these conditions, all the SPS kickers and septa exhibited a rapid vacuum pressure rise and a significant temperature increase with the MKDH playing the dominant effect in restricting the maximum line density that can be attained. This paper presents the results of the collected data, emphasizes the dependence on beam parameters, and introduces a probabilistic model to illustrate the effect of MKDH conditioning observed to forecast the pressure behaviour. Finally, potential countermeasures and outlook are discussed.  
poster icon Poster THBP05 [1.913 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP05  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP14 LHC Optics Measurements from Transverse Damper for the High Intensity Frontier dipole, optics, injection, resonance 479
 
  • T. Nissinen, F.S. Carlier, M. Le Garrec, E.H. Maclean, T.H.B. Persson, R. Tomás García, A. Wegscheider
    CERN, Meyrin, Switzerland
 
  Current and future accelerator projects are pushing the brightness and intensity frontier, creating new challenges for turn-by-turn based optics measurements. Transverse oscillations are limited in amplitude due to particle losses. The LHC Transverse Damper (ADT) is capable of generating low amplitude ac-dipole like transverse coherent beam oscillations. While the amplitude of such excitations is low, it is compensated by the excitation length of the ADT which, in theory, can last for up to 48h. Using the ADT, it is possible to use the maximum BPM acquisition length and improve the spectral resolution. First optics measurements have been performed using the ADT in the LHC in 2023, and the results are presented in this paper. Furthermore, some observed limitations of this method are presented and their impact on ADT studies are discussed.  
poster icon Poster THBP14 [2.632 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP14  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP23 Exploring Space Charge and Intra-beam Scattering Effects in the CERN Ion Injector Chain space-charge, emittance, scattering, injection 515
 
  • E. Waagaard
    EPFL, Lausanne, Switzerland
  • H. Bartosik
    CERN, Meyrin, Switzerland
 
  As of today, the LHC ion physics programme is mostly based on Pb ion collisions. The ALICE3 detector proposal requests significantly higher nucleon-nucleon luminosities, as compared to today¿s operation. This improved performance could be potentially achieved with lighter ion species than Pb. In this respect, the CERN Ion Injector chain (consisting of Linac3, LEIR, PS and SPS) will need to provide significantly higher beam intensities with light ion beams as compared to the present ones, whereas operational experience with such beams is limited. We present space charge and intra-beam scattering studies across the Ion Injector chain and strategies to build benchmarked simulation models for optimised ion performance. This is the first step for identifying the ideal ion isotopes and charge states for maximised LHC luminosity production.  
poster icon Poster THBP23 [2.744 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP23  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP29 Effects of Cavity Pre-Detuning on RF Power Transients at Injection into the LHC cavity, simulation, injection, controls 530
 
  • B.E. Karlsen-Bæck, T. Argyropoulos, A.C. Butterworth, R. Calaga, I. Karpov, H. Timko, M. Zampetakis
    CERN, Meyrin, Switzerland
 
  At injection into the LHC, the RF system is perturbed by beam-induced voltage resulting in strong RF power transients and the instant detuning of the cavities. The automatic tuning system, however, needs time for the mechanical compensation of the resonance frequency to take place. Acting back on the beam, the transients in RF power are expected to limit the maximum injected intensity by generating unacceptable beam loss. Reducing them is therefore essential to reach the target intensity during the High Luminosity (HL) LHC era. At LHC flat bottom, the cavities are operated using the half-detuning beam-loading compensation scheme. As implemented today, the tuner control algorithm starts acting only after the injection of the first longer bunch train which causes the bunches for this injection to experience the largest power spikes. This contribution presents an adapted detuning scheme for the RF cavities before injection. It was proposed as a path to decrease the transients, hence increasing the available intensity margin for the available RF power. The expected gain is evaluated in particle tracking simulations and measurements acquired during operation.  
poster icon Poster THBP29 [3.711 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP29  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP31 Electron Cloud Effects in the CERN Accelerators in Run 3 electron, injection, kicker, simulation 538
 
  • L. Mether, H. Bartosik, L. Giacomel, G. Iadarola, S. Johannesson, I. Mases Solé, K. Paraschou, G. Rumolo, L. Sabato, C. Zannini, E. de la Fuente
    CERN, Meyrin, Switzerland
  • S. Johannesson
    EPFL, Lausanne, Switzerland
 
  Several of the machines in the CERN accelerator complex, in particular the Large Hadron Collider (LHC) and the Super Proton Synchrotron (SPS), are prone to the build-up of electron clouds. Electron cloud effects are observed especially when the machines are operated with a 25 ns bunch spacing, which has routinely been used in the LHC since the start of its second operational run in 2015. After the completion of the LHC Injectors Upgrade program during the latest long shutdown period, the machines are currently operated with unprecedented bunch intensity and beam brightness. With the increase in bunch intensity, electron cloud effects have become one of the main performance limitations, as predicted by simulation studies. In this contribution we present the experimental observations of electron cloud effects since 2021 and discuss their implications for the future operation of the complex.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP31  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP39 Advances on LHC RF Power Limitation Studies at Injection injection, cavity, klystron, controls 567
 
  • H. Timko, T. Argyropoulos, R. Calaga, N. Catalán Lasheras, K. Iliakis, B.E. Karlsen-Bæck, I. Karpov, M. Zampetakis
    CERN, Meyrin, Switzerland
 
  The average power consumption of the main RF system during beam injection in the High-Luminosity Large Hadron Collider is expected to be close to the maximum available klystron power. Power transients due to the mismatch of the beam and the action of control loops will exceed the available power. This paper presents the most recent estimations of the injection voltage and steady-state power needed for HL-LHC intensities, taking also beam stability into account. It summarises measurement and simulation efforts ongoing to better understand power transients and beam losses, and describes the operational margin to be taken into account for different equipment.  
poster icon Poster THBP39 [0.861 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP39  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 20 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP49 Collimation of 400 MJ Beams at the LHC: The First Step Towards the HL-LHC Era collimation, proton, luminosity, impedance 603
 
  • S. Redaelli, A. Abramov, D.B. Baillard, R. Bruce, R. Cai, F. Carra, M. D’Andrea, M. Di Castro, L. Giacomel, P.D. Hermes, B. Lindström, D. Mirarchi, N. Mounet, F.-X. Nuiry, A. Perillo Marcone, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • R. Cai
    EPFL, Lausanne, Switzerland
  • A. Vella
    University of Malta, Information and Communication Technology, Msida, Malta
 
  Funding: Work supported by the HL-LHC project.
An important upgrade programme is planned for the collimation system of the CERN Large Hadron Collider (LHC) in order to meet the challenges of the upcoming High-Luminosity LHC (HL-LHC) project. A first stage of the HL-LHC upgrade was already deployed during the last LHC Long Shutdown, offering important improvements of the collimation cleaning, a significant reduction of the impedance contribution and better cleaning of collisional debris, in particular for ion-ion collisions. This upgrade provides a critical opportunity to explore the LHC intensity limits during the LHC Run 3 and can provide crucial feedback to refine upgrade plans and operational scenarios in the HL-LHC era. This paper describes the performance of the upgraded LHC collimation system that has already enabled stored-beam energies larger than 400 MJ at the unprecedented beam energy of 6.8 TeV, and reviews further upgrade plans envisaged to reach 700 MJ beams at the HL-LHC.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP49  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP50 Fermilab Main Injector and Recycler Operations in the Megawatt Era proton, booster, experiment, electron 607
 
  • A.P. Schreckenberger
    Fermilab, Batavia, Illinois, USA
 
  Significant upgrades to Fermilab¿s accelerator complex have accompanied the development of LBNF and DUNE. These improvements will facilitate 1-MW operation of the NuMI beam for the first time this year through changes to the Recycler slip-stacking procedure and shortening of the Main Injector ramp time. The modifications to the Recycler slip-stacking and effort to reduce the Main Injector ramp time will be discussed. Additionally, details regarding further shortening of the ramp time and the impact on future accelerator operations are presented.  
poster icon Poster THBP50 [0.923 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP50  
About • Received ※ 25 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP55 Commissioning of NICA Injection Complex booster, injection, electron, acceleration 618
 
  • V.A. Lebedev, O.I. Brovko, A.V. Butenko, E.E. Donets, B.V. Golovenskiy, E.V. Gorbachev, S.A. Kostromin, K.A. Levterov, I.N. Meshkov, A.S. Sergeev, M.M. Shandov, A.O. Sidorin, V.L. Smirnov, E. Syresin, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • I. Nikolaichuk, A.Yu. Ramsdorf
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The Nuclotron-based Ion Collider fAcility (NICA) is under construction at JINR. The NICA project goal is to provide colliding beams for studies of collisions of heavy fully stripped ions and light p¿lairized ions. The NICA Collider includes two rings with 503 m circumference each and the injection complex. For the heavy ion mode, the injection complex consists of following accelerators: 3.2 MeV/u linac (HILAC), 600 MeV/u (A/Z=6) superconducting booster synchrotron (Booster) and main superconducting synchrotron (Nuclotron) with kinetic energy up to 3.9 GeV/u (A/Z=2.5). The injection complex has been under commissioning for more than 2 years. Its Run IV was carried from October 2022 to February of 2023. It was aimed on the injection complex preparation for the collider operations in the heavy ion mode. Additionally, the slowly extracted 3.9 GeV/u xenon beam was delivered to the BM&N experiment resulting in 250 million events in the detector. The paper discusses main results of the injection complex commissioning and plans for its further development. The beam commissioning of the collider is expected in the 2nd half of 2025.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP55  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP59 Tomographic Longitudinal Phase Space Reconstruction of Bunch Compression at ISIS synchrotron, proton, simulation, extraction 625
 
  • B.S. Kyle, H.V. Cavanagh, A. Seville, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is an 800 MeV, high intensity, rapid-cycling synchrotron (RCS) used as a driver for a spallation neutron and muon spectroscopy (¿SR) facility. The intensity-limited beam and RCS operation at ISIS poses significant challenges, with non-adiabatic acceleration and space charge forces resulting in distortions to the Hamiltonian longitudinal dynamics. Effective modelling of the machine and benchmarking of models with beam measurements is essential both to improving machine performance, and to the development of the proposed ISIS II facility. The tomographic principle is a well-established tool for the reconstruction of the longitudinal phase space (LPS) of synchrotron beams. Is it operationally desirable for the ISIS accelerator to provide longitudinally compressed proton beams for ¿SR instrumentation. A new bunch compression scheme has been developed and validated using tomography. A reconstruction of the LPS of the ISIS high-intensity proton beam is presented, along with accompanying benchmarking measurements and beam physics simulations.  
poster icon Poster THBP59 [0.907 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP59  
About • Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 20 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRC1I2 High Beam Current Operation with Beam Diagnostics at LIPAc emittance, diagnostics, neutron, beam-diagnostic 649
 
  • S. Kwon, T. Akagi, A. De Franco, K. Hirosawa, K. Kondo, K. Masuda, M. Ohta
    QST Rokkasho, Aomori, Japan
  • F. Bénédetti, Y. Carin, F. Cismondi, D. Gex
    IFMIF/EVEDA, Rokkasho, Japan
  • B. Bolzon, N. Chauvin
    CEA-IRFU, Gif-sur-Yvette, France
  • D. Jimenez-Rey, I. Podadera, A. Rodríguez Páramo, V. Villamayor
    CIEMAT, Madrid, Spain
  • L. Maindive
    UGR, Granada, Spain
  • J. Marroncle
    CEA-DRF-IRFU, France
  • J.C. Morales Vega, I. Podadera
    Consorcio IFMIF-DONES España, Granada, Spain
  • M. Poggi
    INFN/LNL, Legnaro (PD), Italy
 
  The Linear IFMIF Prototype Accelerator (LIPAc) is under commissioning in Rokkasho Fusion Institute in Japan and aims to accelerate 125 mA D⁺ at 9 MeV in CW mode for validating the IFMIF accelerator design. To insure a fine characterization and tuning of the machine many beam diagnostics are installed such as CTs, profile/position/loss/bunch length monitors spanning from Injector to the beam dump (BD). The beam operations in 1.0 ms pulsed D⁺ at 5 MeV was successfully completed with a low power BD (Phase B) in 2019. Despite the challenges posed by the pandemic, the crucial transition to a new linac configuration was also finalized to enable operation in 1.0 ms to CW D⁺ at 5 MeV with the high-power BD (Phase B+). Thanks to the efforts of the entire team, the 1st beam operation of Phase B+ was carried out in 2021. We present the experiences and challenges encountered during the beam operations, particularly the findings from the interceptive devices to measure the beam profile and emittance using tungsten wires rackets, SEMGrid. We also discuss the quick results on other beam diagnostics from the beam operation of Phase B+ toward HDC, which are currently conducting in this Summer.  
slides icon Slides FRC1I2 [9.323 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRC1I2  
About • Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I2 Summary of the Working Group B linac, space-charge, rfq, simulation 666
 
  • N.J. Evans
    ORNL RAD, Oak Ridge, Tennessee, USA
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Summary of the Working Group on Beam Dynamics in Linacs.  
slides icon Slides FRA2I2 [1.306 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I2  
About • Received ※ 23 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 24 January 2024  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I4 Summary of the Commissioning and Operations and Performance Working Group for HB2023 Workshop MMI, linac, proton, diagnostics 675
 
  • N. Milas
    ESS, Lund, Sweden
  • M. Bai
    SLAC, Menlo Park, California, USA
  • S. Wang
    IHEP, Beijing, People’s Republic of China
 
  Summary for WGD.  
slides icon Slides FRA2I4 [11.582 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I4  
About • Received ※ 06 November 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 November 2023 — Issued ※ 17 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I5 Summary of Working Group E: Instrumentation and Intercepting Devices target, radiation, instrumentation, simulation 677
 
  • P. Forck
    GSI, Darmstadt, Germany
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
  • K. Satou
    KEK, Tokai, Ibaraki, Japan
 
  The talk concerns the summary of the Working Group E related to Instrumentation and Intercepting Devices  
slides icon Slides FRA2I5 [6.640 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I5  
About • Received ※ 26 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 13 January 2024  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)