

LHC Optics Measurements from Transverse Damper for the High Intensity Frontier

T. Nissinen^{*1, 2}, F. Carlier¹, M. Le Garrec¹, E.H. Maclean¹, T.H.B. Persson¹, R. Tomás¹, A. Wegscheider¹

2 Tampere University, Tampere, Finland 1 CERN, Geneva, Switzerland

- LHC Transverse Damper (ADT) can be used in ac dipolelike mode to provide coherent transverse excitations.
- Excitation amplitude is lower compared to ac dipole, but spectral resolution can be improved by increasing number of turns acquired.
- First linear & nonlinear optics measurements with the ADT performed in 2023.

PHASE RESOLUTION FROM TURN-BY-TURN DATA

- Phase error reduces for increasing oscillation amplitudes
- Higher number of turns decreases the phase error
- Phase resolution of ADT

OPTICS MEASUREMENTS WITH THE ADT

- Pilot bunches at injection energy, ADT excitations with 28500 turns
- Good agreement observed in β -beating between ADT and ac dipole for both beams and both planes
- Observed deviation generally within measurement errors of ac dipole measurements

Optics measurements can reliably be done with ADT at injection energy

60

matches with ac dipole at injection energy

Figure 1: Phase error from ADT and ac dipole excitations as a function of oscillation amplitude for different number of turns.

RESONANCE DRIVING TERMS

- Improved spectral resolution with the increase in turns may benefit measuring resonance driving terms (RDTs)
- Secondary spectral lines $2Q_x^{ADT}$ and $3Q_x^{ADT}$ observed in ADT measurements
- Some qualitative \bullet agreement observed between ADT and ac dipole for the sextupolar RDTs
- Promising results for nonlinear optics measurements with the ADT

Figure 4: Frequency spectrum of the horizontal plane for Beam 2. Secondary spectral lines are observed at the frequencies $2Q_x^{ADT}$ (normal sextupole) and $3Q_x^{ADT}$ (normal octupole).

OBSERVATION OF 50 HZ SIDEBANDS IN THE ADT

- 50 Hz sidebands observed around the ADT tune at injection energy and at top energy
- Three clear sidebands at frequencies $Q_{x,d} \pm Q_{50Hz}$ and $Q_{x,d} + 2Q_{50Hz}, Q_{50Hz} = 4.45 \times 10^{-3}$
- Likely generated by a 50 Hz modulation of ADT waveform and function as three weaker ac dipoles
 - Amplitude response of the sidebands is asymmetric and increases when approaching the natural tune Q_{χ}
- Relative strength of sidebands with respect to ADT kick • strength calculated by treating sidebands as ac dipoles [1]

Δ —	B_p	
$\square n -$		

Figure 6: Strength of the 50 Hz sidebands at the frequency of the driven ADT tune for Beam 1.

	1^{st} sideband $[10^{-3}]$	2^{nd} sideband $[10^{-3}]$
B1 H	2.64 ± 0.10	0.85 ± 0.03
B1 V	3.02 ± 0.05	0.90 ± 0.03
B2 H	1.98 ± 0.11	0.57 ± 0.02
B2 V	2.62 ± 0.08	0.41 ± 0.03

CONCLUSIONS

- ADT used for transverse excitations in the LHC with increased number of turns to improve spectral radiation.
- Linear optics measurements agree well with the ac dipole. Increased number of acquired turns could yield fill-by-fill optics measurements at injection.
- First measurements of normal sextupolar and octupolar RDTs with the ADT with promising results for nonlinear optics measurements.
- 50 Hz sidebands observed on the ADT frequency spectrum with a strength of

$$\sin(\pi(Q_{x,d}+p\cdot Q_{50Hz})-Q_x))$$

 $B_p = \sqrt{\beta_{ADT}} \hat{B}_p / (4B_0 \rho)$ is the effective strength of an ac dipole associated to the pth sideband, $p \in \{-1, 1, 2\}$ $\sqrt{\beta_{ADT}}$ is the β function at the ADT, \hat{B}_{p} is the integrated magnetic field, $B_{0}\rho$ is the magnetic rigidity

Table 1: Measured relative strengths of the 50 Hz sidebands $(B_1/B_0 \text{ and } B_2/B_0)$ for both beams and both planes.

- Strength of 50 Hz sidebands larger than previously expected, further studies ongoing to determine the effect
- For the first order sidebands, phase difference between the ADT and the sideband is of opposite sign – further analysis needed

 $(0.25 \pm 0.04)\%$ and $(0.069 \pm 0.02)\%$ for first and second order sidebands, respectively. Further studies are needed.

REFERENCES

[1] R. Tomás, "Normal Form of Particle Motion under the Influence of an AC Dipole", Phys. Rev. ST Accel Beams, vol. **5**, 54001 (2002).

*tuuli.wilhelmiina.nissinen@cern.ch

