JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.
TY - CONF AU - Karlsen-Bæck, B.E. AU - Argyropoulos, T. AU - Butterworth, A.C. AU - Calaga, R. AU - Karpov, I. AU - Timko, H. AU - Zampetakis, M. ED - Cai, Yunhai ED - Nagaitsev, Sergei ED - Kim, Dong Eon ED - Marx, Michaela ED - Schaa, Volker R. W. TI - Effects of Cavity Pre-Detuning on RF Power Transients at Injection into the LHC J2 - Proc. of HB2023, Geneva, Switzerland, 09-13 October 2023 CY - Geneva, Switzerland T2 - ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams T3 - 68 LA - english AB - At injection into the LHC, the RF system is perturbed by beam-induced voltage resulting in strong RF power transients and the instant detuning of the cavities. The automatic tuning system, however, needs time for the mechanical compensation of the resonance frequency to take place. Acting back on the beam, the transients in RF power are expected to limit the maximum injected intensity by generating unacceptable beam loss. Reducing them is therefore essential to reach the target intensity during the High Luminosity (HL) LHC era. At LHC flat bottom, the cavities are operated using the half-detuning beam-loading compensation scheme. As implemented today, the tuner control algorithm starts acting only after the injection of the first longer bunch train which causes the bunches for this injection to experience the largest power spikes. This contribution presents an adapted detuning scheme for the RF cavities before injection. It was proposed as a path to decrease the transients, hence increasing the available intensity margin for the available RF power. The expected gain is evaluated in particle tracking simulations and measurements acquired during operation. PB - JACoW Publishing CP - Geneva, Switzerland SP - 530 EP - 533 KW - cavity KW - simulation KW - injection KW - operation KW - controls DA - 2024/04 PY - 2024 SN - 2673-5571 SN - 978-3-95450-253-0 DO - doi:10.18429/JACoW-HB2023-THBP29 UR - https://jacow.org/hb2023/papers/thbp29.pdf ER -