Keyword: rfq
Paper Title Other Keywords Page
TUC1C2 The Impact of High-Dimensional Phase Space Correlations on the Beam Dynamics in a Linear Accelerator linac, MEBT, simulation, LEBT 68
 
  • A.M. Hoover, A.V. Aleksandrov, S.M. Cousineau, K.J. Ruisard, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, TN, USA
 
  Hadron beams develop intensity-dependent transverse-longitudinal correlations within radio-frequency quadrupole (RFQ) accelerating structures. These correlations are only visible in six-dimensional phase space and are destroyed by reconstructions from low-dimensional projections. In this work, we estimate the effect of artificial decorrelation on the beam dynamics in the Spallation Neutron Source (SNS) linac and Beam Test Facility (BTF). We show that the evolution of a realistic initial distribution and its decorrelated twin converge during the early acceleration stages; thus, low-dimensional projections are probably sufficient for detailed predictions in high-power linacs.  
slides icon Slides TUC1C2 [6.573 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC1C2  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I2 Measurements of Momentum Halo Due to the Reduced RFQ Voltage During the LIPAc Beam Commissioning MMI, operation, simulation, cryomodule 112
 
  • K. Hirosawa, A. De Franco, K. Hasegawa, K. Kondo, S. Kwon, K. Masuda, A. Mizuno, M. Sugimoto
    QST Rokkasho, Aomori, Japan
  • F. Bénédetti
    CEA-DRF-IRFU, France
  • Y. Carin, H. Dzitko, D. Gex, I. Moya, F. Scantamburlo
    F4E, Germany
  • J.C. Morales Vega
    Consorcio IFMIF-DONES España, Granada, Spain
  • I. Podadera
    CIEMAT, Madrid, Spain
 
  The Linear IFMIF Prototype Accelerator, LIPAc, is being commissioned aiming in particular at validating the RFQ up to 5MeV beam acceleration. Eventually, the nominal beam of 5 MeV-125 mA in 1 ms/1 Hz pulsed mode was achieved in 2019. The beam operation has been resumed since July 2023 after long maintenance including recovery from unexpected problems in the RFQ RF system. This new phase aims at the commissioning of the full configuration except SRF linac, which is replaced by a temporary beam transport line. Focusing on the RFQ behavior, it will be interesting to operate it at higher duty especially for longer pulses. Indeed, a beam simulation study suggested that the beam extracted from the RFQ includes considerable momentum halo when the RFQ voltage reduces by a few percent, with a slight decrease of mean energy. It can be a potential source of quench like the mismatched beam in the cryomodule. This could be studied measuring the energy from the Time-of-Flight among multiple BPMs while monitoring beam loss around the dipole, where momentum halo should be lost. During the upcoming commissioning, we propose to study them by scanning the RFQ voltage.  
slides icon Slides TUA3I2 [4.465 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I2  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I4 SARAF MEBT Commissioning experiment, MEBT, linac, proton 123
 
  • N. Pichoff, A. Chancé, J. Dumas, F. Gougnaud, F. Senée, D.U. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Kreisel, J. Luner, A. Perry, E. Reinfeld, R. Weiss-Babai, L. Weissman
    Soreq NRC, Yavne, Israel
 
  SNRC in Israel is in the process of constructing a neutron production accelerator facility called SARAF. The facility will utilize a linac to accelerate a 5 mA CW deuteron and proton beam up to 40 MeV. In the first phase of the project, SNRC completed construction and operation of a linac (referred to as SARAF Phase I) which included an ECR ion source, a Low-Energy Beam Transport (LEBT) line, and a 4-rod RFQ. The second phase of the project involves collaboration between SNRC and Irfu in France to manufacture the linac. The injector control system has been updated and the Medium Energy Beam Transport (MEBT) line has been installed and integrated into the infrastructure. Recent testing and commissioning of the injector and MEBT with 5 mA CW protons and 5 mA pulsed Deuterons, completed in 2022 and 2023, will be presented and discussed. A special attention will be paid to the experimental data processing with the Bayesian inference of the parameters of a digital twin.  
slides icon Slides TUA3I4 [2.559 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I4  
About • Received ※ 04 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA4I2 Linac4 Source and Low Energy Experience and Challenges emittance, linac, solenoid, simulation 290
 
  • E. Sargsyan, G. Bellodi, F.D.L. Di Lorenzo, J. Etxebarria, J.-B. Lallement, A.M. Lombardi, M. O’Neil
    CERN, Meyrin, Switzerland
 
  At the end of Long Shutdown 2 (LS2), in 2020 Linac4 became the new injector of CERN’s proton accelerator complex. The previous version of the Linac4 H⁻ ion source (IS03), produced an operational pulsed peak beam current of 35 mA, resulting in 27 mA after the Radio-Frequency Quadrupole (RFQ). This limited transmission was mainly due to the extracted beam emittance exceeding the acceptance of the RFQ. A new geometry of the Linac4 source extraction electrodes has been developed with the aim of decreasing the extracted beam emittance and increasing the transmission through the RFQ. The new source (IS04) has been studied and thoroughly tested at the Linac4 source test stand. At the start of the 2023 run, the IS04 was installed as operational source in the Linac4 tunnel and is being successfully used for operation with 27 mA peak current after the RFQ. During high-intensity tests, the source, the linac, and the transfer-line to the Proton Synchrotron Booster (PSB) were also tested with a peak beam current of up to 50 mA from the source resulting in 35 mA at the PSB injection. This paper discusses the recent developments, tests, and future plans for the Linac4 H⁻ ion source.  
slides icon Slides WEA4I2 [2.217 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA4I2  
About • Received ※ 27 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA2C2 Comparison of Longitudinal Emittance of Various RFQs emittance, simulation, focusing, linac 368
 
  • M. Comunian, L. Bellan, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  In various projects a large variety of RFQs has been developed, for different application, with different average current, frequency, and energy range. On this article a comparison, in a scaled way, will be done, using the build RFQs of IFMIF, ESS, SPES, ANTHEM, PIAVE. On particular the beam dynamics characteristics will be analyzed, like transmission, output longitudinal emittance and real performance versus simulation.  
slides icon Slides THA2C2 [6.261 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA2C2  
About • Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 16 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP01 ESS-Bilbao RFQ Power Coupler: Design, Simulations and Tests vacuum, cavity, linac, multipactoring 433
 
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ESS-Bilbao RFQ power coupler is presented. The RFQ operates at 352.2 MHz and will accelerate the 32 mA proton beam extracted from the ion source up to 3.0MeV. The RFQ will complete the ESS-Bilbao injector, that can be used by the ARGITU neutron source or as a stand-alone facility. The machining of the RFQ is finished, and vacuum tests as well as low power RF measurements have been carried out. The presented power coupler is a first iteration of the device, designed to be of easier and faster manufacturing than what might be needed for future upgrades of the linac. The coupler does not have active cooling and no brazing has been needed to assemble it. It can operate at the RF power required by the RFQ but at lower duty cycles. The dielectric window is made of polymeric material, so it can withhold the assembly using vacuum seals and bolts. Design and manufacturing issues are reported in the paper, as well as the RF tests that have been carried out at medium power. Multipacting calculations compared to measured values during conditioning are also reported. High power tests of the coupler have also been performed in the ISIS-FETS RFQ and are also described here.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP01  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP03 ESS-Bilbao RFQ Static Tuning Algorithm and Simulation cavity, simulation, operation, neutron 440
 
  • J.L. Muñoz, I. Bustinduy, A. Conde, N. Garmendia, P.J. González, J. Martin, V. Toyos
    ESS Bilbao, Zamudio, Spain
 
  The ESS-Bilbao RFQ operates at 352.2 MHz. The machining of the four RFQ segments has finished and the assembly and tuning operations will follow shorly. The static tuning and field flatness are provided by an array of 60 plunger tuners, distributed along the 3.2 meters length of the structure. There are four tuners per segment per quadrant, except for one of the segments where the ports are used by the power couplers. A bead-pull setup will provide the measurements of the field profiles, that will be collected in a matrix built up with the contributions of individual tuners. The conventional approach of inverting the matrix to get the optimum tuners distribution is explored, as well as additional optimization method. Particularly, a genetic optimization algorithm provides a very succesful tuning of the RFQ. The solution provided by this approach will be used as the initial configuration of the tuners before the bead-pull measurements are carried out. Additionally, static and dynamic tuning of the RFQ is studied by high performance computing simulations of the RFQ. The analysis of the in-house computational electromagnetics suite used for these tasks is also discussed in this paper.  
poster icon Poster THBP03 [2.285 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP03  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP06 RFQ Upgrades for IFMIF-DONES simulation, emittance, neutron, toolkit 451
 
  • M. Comunian, L. Bellan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  In the framework of IFMIF-DONES (International Fusion Materials Irradiation Facility- DEMO-Oriented Neutron Early Source) ¿ a powerful neutron irradiation facility for studies and certification of materials to be used in fusion reactors is planned as part of the European roadmap to fusion electricity. A possible RFQ upgrade has been designed. In this article the beam dynamics of an RFQ able to handle CW 200 mA of Deuterium, based on experience of IFMIF RFQ, will be presented.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP06  
About • Received ※ 24 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP08 Simulation Studies on the Low Energy Beam Transfer (LEBT) System of the ISIS Neutron Spallation Source ion-source, LEBT, solenoid, space-charge 454
 
  • S.A. Ahmadiannamin, D.C. Faircloth, S.R. Lawrie, A.P. Letchford, T.M. Sarmento, O.A. Tarvainen
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The transmission efficiency and beam dynamic parameters of the low-energy beam transfer (LEBT) section of proton accelerators, serving as a neutron spallation source, have a critical impact on beam loss in subsequent sections of the linear accelerator. Due to variations and mismatches, the beam parameters at the entrance of the radio-frequency quadrupole (RFQ) change, significantly affecting the transmission efficiency of the RFQ and the matching between RFQ and drift tube linac (DTL) structures. Recognizing the importance of this concept, particle-in-cell studies were conducted to optimize the LEBT section of the ISIS accelerator. This study presents the results of simulations.  
poster icon Poster THBP08 [1.081 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP08  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1I1 Status of the IOTA Proton Injector proton, electron, MEBT, LEBT 629
 
  • D.R. Edstrom, D.R. Broemmelsiek, K. Carlson, J.-P. Carneiro, H. Piekarz, A.L. Romanov, A.V. Shemyakin, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The IOTA Proton Injector (IPI), currently under installation at the Fermilab Accelerator Science and Technology facility, is a beamline capable of delivering 20-mA pulses of protons at 2.5 MeV to the Integrable Optics Test Accelerator (IOTA) ring. First beam in the IPI beamline is anticipated in 2023, when it will operate alongside the existing electron injector beamline to facilitate further fundamental physics research and continued development of novel accelerator technologies in the IOTA ring. This report details the expected operational profile, known challenges, and the current state of installation.
 
slides icon Slides FRA1I1 [6.466 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA1I1  
About • Received ※ 08 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I2 Summary of the Working Group B linac, space-charge, operation, simulation 666
 
  • N.J. Evans
    ORNL RAD, Oak Ridge, Tennessee, USA
  • F. Bouly
    LPSC, Grenoble Cedex, France
  • H.W. Zhao
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Summary of the Working Group on Beam Dynamics in Linacs.  
slides icon Slides FRA2I2 [1.306 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I2  
About • Received ※ 23 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 24 January 2024  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)