

SARAF MEBT commissioning

CEA-IRFU - J. Dumas, N. Pichoff, A. Chance, F. Gougnaud, F. Senée, D. Uriot SNRC - A. Kreisel, J. Luner, A. Perry, E. Reinfeld, L. Weissman

The SARAF LINAC

Ions Protons/Deutons Energy 1.3/2.6 – 35/40 MeV Current 0.04 - 5 mA 100µs to CW

The SARAF MEBT

- □ Tests of Beam Diagnostics and Local Control System
- RFQ and MEBT transmission measurements
- □ Rebuncher calibration
- Longitudinal characterization (bunch length, emittance)
- Transverse characterization (bunch width, emittance)

W

Contents

- The Machine tuning
- The Beam characterization in MEBT
- Machine learning philosophy…

Machine Tuning

HB2023 - SARAF MEBT Commissioning

EIS - Warm-up

20 minutes are needed after EIS switch ON for a stable beam out of the RFQ

HB2023 - SARAF MEBT Commissioning

EIS - Voltage tuning (to RFQ)

RFQ and MEBT transmission measurements

Transmission (/ $ACCT_{LEBT}$), nominal optics

æz

W

Rebuncher calibration (protons)

W

Rebuncher calibration (deutons)

Beam characterization

KANANA KANANA KANANA KANANA

HB2023 - SARAF MEBT Commissioning

Transversal characterization (protons)

Transversal characterization (deutons)

Transversal characterization (deutons)

Longitudinal characterization in DB1 (protons)

Longitudinal characterization in Dplate (protons)

Longitudinal characterization in DB2 (protons)

Longitudinal characterization (deutons)

Caractérisation longitudinale (deutons)

SARAF

nac

Power ramp up (protons)

 \sim \sim \sim \sim

 $Q2$

Power ramp up (protons)

 $Q2$

Machine learning

HB2023 - SARAF MEBT Commissioning

Usual data processing

The usual way to process the experimental data, is to consider "perfect" (possibly after device transfer function deconvolution) beam **measured properties** *Examples: Bunch length…*

From these measured properties, one tries to access to other **deduced properties**

Examples: Longitudinal emittance…

Nevertheless :

- The final deduced properties (emittance) are **not exactly those of the beam** (measurement uncertainties)
- They are usually **uncompleted** (dimensions are missing, no correlation...)
- How to use the deduced properties to make predictions and associated uncertainties?

W WY

Digital twin

Real world: The linac is operated according to:

- a set of **physical parameters**,
- a set of **control parameters** (IN/OUT Control-System variables).

Examples: Distances, Source voltage, RFQ-peak-up, Power supply currents…

Virtual world: A linac has been designed and is modeled with a **digital twin** made of:

- a **simulation tool** (TraceWIN),
- a set of **model parameters** (SARAF file description).

Examples: Input beam energy, RFQ-Voltage, MEBT-QP1 gradient…

Links between real and virtual worlds:

- The simulation tool models the physics (with possible bugs),
- Each model parameter is linked to one or more control parameters. *Examples: Qpole gradient* [↔] *PS current…*

Adjusting digital twin

During the design and at the start of the machine, links are "estimated" as measured individually on each components, with uncertainties.

```
Example: QP1_G = k0 [±dk] * QP1_I, …
```
We propose to adjust gradually, experiment after experiment, the links (k...) in order to improve the digital twin, using **Bayesian inference** technics (machine learning).

In order to do it, one should be able to:

- Store in a **database** each experimental result and associated machine configuration (installed devices+control parameters),
- **Simulate** the best as possible the results of the experiments,
- Calculate a "**distance**" between experimental and simulated measurements,
- Adjusting the best digital twin parameters minimizing the average weighted distance of all experiments and associated uncertainties.

Bayesian method

- A : a set of experimental measurements
- $B:$ a theory or a set of parameters in the numerical Twin

Simulation of the experimental results

The probability of the parameters after the experiment

$$
p(B/A) = \frac{p(A/B)}{p(A)} \times p(B)
$$

The probability of the parameters before the experiment

The uncertainties of the experimental measurements

Leading to:

- The best set of parameter set B_{opt} (maximizing $p(B/A)$ or $B_{opt} = \frac{\int p(B/A) \times B \cdot dB}{\int p(B/A) \cdot dB}$)

- The uncertainties on the parameters : $V_{B} =$ $\int p(B/A) \times B \times B^* \cdot d$ $J p(B/A) \cdot d$

Bayesian method - incremental

 A_n : a new set of experimental measurements (after A_{n-1})

$$
p(B/A_n) = \frac{p(A_n/B)}{p(A_n)} \times p(B/A_{n-1})
$$

\n
$$
\Rightarrow p(B/A_n) = \prod_{i=1}^n \frac{p(A_i/B)}{p(A_i)} \times p_0(B)
$$

- The numerical twin can then be « adjusted » experiment after experiment.
- If needed, all the experiments can be processed again.
- New parameters can be added without losing what has been learned on other parameters.
- Analysing deviant experimental results, one can:
	- Either improve measurement understanding (badly simulated)
	- Or improve linac model (missing parameters)

Longitudinal emittance : improving model

- FFC **pinhole** of 0.5 mm radius
	- \rightarrow only a fraction of the beam is measured
- The profiles are noisy and experimental profiles have **negative "bounce"**
	- \rightarrow This can be simulated or at least smoothed
- **Scope Bandwidth** of 6Ghz
	- \rightarrow Possible resolution limitation \rightarrow can be simulated
- \rightarrow A simulation of the measurement is applied to the simulated beam \rightarrow Experiment and simulated experiments can be compared

Example of exp. conditions simulation

W

W

Longitudinal emittance : Improving model

- Remarkable agreement between simulations (TraceWin) and experiments (no parameter change)
- \Box Iterative process with new beam/beamline characterization (RFQ, transverse emittance...)

IRAF

Little story

When doing **the transverse emittance measurements** (Quad scan) of the 5 mA proton beam, one remarked that the experiment results were **very different** from the numerical twin predictions.

Strategy 1: We could have kept the experiment result "as reality" and have considered that the beam transverse parameters were not "as expected", trying to implement them in the code.

Strategy 2: Nevertheless, using this "machine learning" philosophy, we observed that the experimental results were much better reproduced by considering an increasing of the focusing force by about +20% (much more that estimated initial uncertainties of a few %).

→ Finally, checking the Control-System, one founds out that **there was a mistake on the G_QP/I_QP parameter by +18%** (wrong magnetic length was used) !

By using strategy 1, one could have **resolved the incoherence** between code and measurement by compensating two errors (one on the initial distribution, one in Qpole gradients). Nevertheless, this would have produced **new incoherence with other MEBT configurations (**deuterons, current…)

Using strategy 2 allowed us to improve our machine knowledge **for all configurations**.

