Keyword: proton
Paper Title Other Keywords Page
MOA3I1 Beam Dynamics Challenges in the Design of the Electron-Ion Collider electron, polarization, hadron, emittance 23
 
  • Y. Luo, M. Blaskiewicz, D. Marx, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • A. Blednykh, C. Montag, V. Ptitsyn, V.H. Ranjbar, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • S. Nagaitsev
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC), presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory, will col­lide po­lar­ized high-en­ergy elec­tron beams with hadron beams, achiev­ing lu­mi­nosi­ties up to 1 × 1034 cm¿2 s¿1 in the cen­ter-of-mass en­ergy range of 20-140 GeV. To achieve such high lu­mi­nos­ity, we adopt high bunch in­ten­si­ties for both beams, small and flat trans­verse beam sizes at the in­ter­ac­tion point (IP), a large cross­ing angle of 25 mrad, and a novel strong hadron cool­ing in the Hadron Stor­age Ring (HSR) to coun­ter­act in­tra-beam scat­ter­ing (IBS) at the col­li­sion en­ergy. In this talk, we will re­view the beam dy­nam­ics chal­lenges in the de­sign of the EIC, par­tic­u­larly the sin­gle-par­ti­cle dy­namic aper­ture, po­lar­iza­tion main­te­nance, beam-beam in­ter­ac­tion, im­ped­ance bud­get and in­sta­bil­i­ties. We will also briefly men­tion some tech­ni­cal chal­lenges as­so­ci­ated with beam dy­nam­ics, such as strong hadron cool­ing, mul­ti­poles and noises of crab cav­i­ties, power sup­ply cur­rent rip­ples, and the vac­uum up­grade to ex­ist­ing beam pipes of the Hadron Stor­age Ring of the EIC.
 
slides icon Slides MOA3I1 [3.437 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I1  
About • Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA3I3 High-Power Targetry and the IMPACT Initiative at Paul Scherrer Institute target, radiation, operation, lattice 30
 
  • D.C. Kiselev
    PSI, Villigen PSI, Switzerland
 
  The main chal­lenges to op­er­ate a high-power tar­get are dis­si­pa­tion of the heat and ra­di­a­tion dam­age. The lat­ter refers to the dam­age of the ma­te­r­ial. Since the break­down of the ma­te­r­ial de­pends on the op­er­a­tion tem­per­a­ture and other con­di­tions, like the ma­te­r­ial treat­ment be­fore ir­ra­di­a­tion, it is dif­fi­cult to pre­dict. To re­duce fail­ures, tar­get op­er­a­tion pa­ra­me­ters and beam prop­er­ties have to be mon­i­tored care­fully. After the fail­ure of the neu­tron spal­la­tion tar­get (SINQ) in 2016, sev­eral im­prove­ments in the HIPA (High in­ten­sity Pro­ton Ac­cel­er­a­tor) beam line at PSI and the tar­get in­stal­la­tion were im­ple­mented. How­ever, MW beams are not a pre­req­ui­site for the need of high power tar­gets. This is the case at one of the two new tar­get sta­tions within the IM­PACT ini­tia­tive at PSI. One tar­get sta­tion will pro­duce ra­dionu­clides for re­search in can­cer ther­apy, while the other will im­prove the sur­face muon rate by a fac­tor of 100 for ex­per­i­ments in par­ti­cle and ma­te­r­ial physics. In this pre­sen­ta­tion, strate­gies for suc­cess­ful op­er­a­tion of high-power tar­gets are shown. Fur­ther­more, the IM­PACT ini­tia­tive at PSI, with focus on the two planned tar­get sta­tions, will be pre­sented.  
slides icon Slides MOA3I3 [4.909 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I3  
About • Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 20 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA1I2 New Understanding of Longitudinal Beam Instabilities and Comparison with Measurements impedance, synchrotron, coupling, damping 45
 
  • I. Karpov
    CERN, Meyrin, Switzerland
 
  Beam in­sta­bil­i­ties dri­ven by broad- and nar­row­band im­ped­ance sources have been treated sep­a­rately so far. In this con­tri­bu­tion, we pre­sent the gen­er­alised beam sta­bil­ity analy­sis based on the con­cept of van Kam­pen modes. In the pres­ence of broad­band im­ped­ance, the loss of Lan­dau damp­ing (LLD) in the lon­gi­tu­di­nal plane can occur above a cer­tain sin­gle-bunch in­ten­sity. For sig­nif­i­cantly higher in­ten­si­ties, the broad-band im­ped­ance can drive vi­o­lent ra­dial or az­imuthal mode-cou­pling in­sta­bil­i­ties. We have shown that the syn­chro­tron fre­quency spread due to RF field non-lin­ear­ity, counter-in­tu­itively, re­duces the sin­gle-bunch in­sta­bil­ity thresh­old. We have also demon­strated that a multi-bunch in­sta­bil­ity dri­ven by a nar­row-band im­ped­ance source can be sig­nif­i­cantly af­fected by LLD when adding broad-band im­ped­ance. These find­ings are sup­ported by macropar­ti­cle sim­u­la­tions and beam ob­ser­va­tions in the Super Pro­ton Syn­chro­tron and the Large Hadron Col­lider at CERN.  
slides icon Slides TUA1I2 [1.517 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA1I2  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC1I1 Multi-beam Operation of LANSCE Accelerator Facility linac, emittance, operation, alignment 58
 
  • Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
 
  The unique fea­ture of the LAN­SCE ac­cel­er­a­tor fa­cil­ity is the si­mul­ta­ne­ous de­liv­er­ing of beams to five ex­per­i­men­tal tar­gets. Pro­ton beam with en­ergy of 100-MeV is de­liv­ered to Iso­tope Pro­duc­tion Fa­cil­ity (IPF), while 800-MeV H⁻ beams are dis­trib­uted to four ex­per­i­men­tal areas: the Lujan Neu­tron Scat­ter­ing Cen­ter, the Weapons Neu­tron Re­search fa­cil­ity (WNR), the Pro­ton Ra­di­og­ra­phy fa­cil­ity (pRad), and the Ul­tra-Cold Neu­tron fa­cil­ity (UCN). Multi-beam op­er­a­tion of ac­cel­er­a­tor fa­cil­ity re­quires care­ful op­ti­miza­tion of beam losses, which is achieved by pre­cise tun­ing of the beam, im­pos­ing re­stric­tion on am­pli­tudes and phases of RF sec­tions, ap­pli­ca­tion of beam-based align­ment, con­trol of H⁻ beam strip­ping, op­ti­miza­tion of ion sources per­for­mance and low-en­ergy beam trans­port op­er­a­tion under space-charge neu­tral­iza­tion. The near - term plans are to re­place ob­so­lete sys­tems of the LAN­SCE lin­ear ac­cel­er­a­tor with mod­ern Front End, which is the part of Los Alamos Mod­ern­iza­tion Pro­ject (LAMP). This paper sum­ma­rizes ex­per­i­men­tal re­sults ob­tained dur­ing op­er­a­tion of LAN­SCE ac­cel­er­a­tor fa­cil­ity and con­sid­ers plans to ex­pand per­for­mance of the ac­cel­er­a­tor for near-and long-term op­er­a­tions.  
slides icon Slides TUC1I1 [10.013 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC1I1  
About • Received ※ 30 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2C2 Recent Advances in the CERN PS Impedance Model and Instability Simulations impedance, kicker, simulation, synchrotron 86
 
  • S. Joly
    La Sapienza University of Rome, Rome, Italy
  • G. Iadarola, N. Mounet, B. Salvant, C. Zannini
    CERN, Meyrin, Switzerland
  • M. Migliorati
    INFN-Roma1, Rome, Italy
 
  Trans­verse in­sta­bil­ity growth rates in the CERN Pro­ton Syn­chro­tron are stud­ied thanks to the re­cently up­dated im­ped­ance model of the ma­chine. Using this model, macropar­ti­cle track­ing sim­u­la­tions were per­formed with a new method well-suited for the slic­ing of short wakes, which achieves com­pa­ra­ble per­for­mance to the orig­i­nally im­ple­mented method while re­duc­ing the re­quired num­ber of slices by a fac­tor of 5 to 10. Ded­i­cated beam-based mea­sure­ment cam­paigns were car­ried out to bench­mark the im­ped­ance model. Until now, the model un­der­es­ti­mated in­sta­bil­ity growth rates at in­jec­tion en­ergy. Thanks to a re­cent ad­di­tion to the im­ped­ance model, namely the kicker mag­nets¿ con­nect­ing ca­bles and their ex­ter­nal cir­cuits, the sim­u­lated in­sta­bil­ity growth rates are now com­pa­ra­ble to the mea­sured ones.  
slides icon Slides TUA2C2 [0.736 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2C2  
About • Received ※ 28 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I4 SARAF MEBT Commissioning experiment, MEBT, linac, rfq 123
 
  • N. Pichoff, A. Chancé, J. Dumas, F. Gougnaud, F. Senée, D.U. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Kreisel, J. Luner, A. Perry, E. Reinfeld, R. Weiss-Babai, L. Weissman
    Soreq NRC, Yavne, Israel
 
  SNRC in Is­rael is in the process of con­struct­ing a neu­tron pro­duc­tion ac­cel­er­a­tor fa­cil­ity called SARAF. The fa­cil­ity will uti­lize a linac to ac­cel­er­ate a 5 mA CW deuteron and pro­ton beam up to 40 MeV. In the first phase of the pro­ject, SNRC com­pleted con­struc­tion and op­er­a­tion of a linac (re­ferred to as SARAF Phase I) which in­cluded an ECR ion source, a Low-En­ergy Beam Trans­port (LEBT) line, and a 4-rod RFQ. The sec­ond phase of the pro­ject in­volves col­lab­o­ra­tion be­tween SNRC and Irfu in France to man­u­fac­ture the linac. The in­jec­tor con­trol sys­tem has been up­dated and the Medium En­ergy Beam Trans­port (MEBT) line has been in­stalled and in­te­grated into the in­fra­struc­ture. Re­cent test­ing and com­mis­sion­ing of the in­jec­tor and MEBT with 5 mA CW pro­tons and 5 mA pulsed Deuterons, com­pleted in 2022 and 2023, will be pre­sented and dis­cussed. A spe­cial at­ten­tion will be paid to the ex­per­i­men­tal data pro­cess­ing with the Bayesian in­fer­ence of the pa­ra­me­ters of a dig­i­tal twin.  
slides icon Slides TUA3I4 [2.559 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I4  
About • Received ※ 04 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I3 Laser Stripping of H⁻ Beam laser, experiment, injection, resonance 141
 
  • T.V. Gorlov, A.V. Aleksandrov, S.M. Cousineau, Y. Liu, A.R. Oguz
    ORNL, Oak Ridge, Tennessee, USA
  • N.J. Evans
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P.K. Saha
    JAEA/J-PARC, Tokai-mura, Japan
 
  Basic prin­ci­ples of laser as­sisted charge ex­change in­jec­tion for H⁻ ion andH0 beams are pre­sented. The­o­ret­i­cal as­pects of elec­tro­mag­netic in­ter­ac­tion of laser with hy­dro­gen atom and H⁻ ions are dis­cussed. Laser ex­ci­ta­tion, pho­toion­iza­tio and in­ter­ac­tion of atoms and ions with a strong elec­tro-mag­netic field are dis­cussed and com­pared. Dif­fer­ent tech­niques of LACE for strip­ping of high cur­rent sto­chas­tic beams are pre­sented. The op­ti­mum pa­ra­me­ters of LACE are es­ti­mated and com­pared for var­i­ous ion beam en­er­gies. Ex­per­i­men­tal de­vel­op­ment of laser strip­ping at the SNS are re­viewed. Fu­ture plans of LACE at the SNS and J-PARC are dis­cussed.  
slides icon Slides TUC3I3 [1.790 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I3  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 01 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC1I1 Radiation Hardened Beam Instrumentations for Multi-Mega-Watt Beam Facilities target, radiation, instrumentation, operation 199
 
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  A beam in­stru­men­ta­tion is an es­sen­tial el­e­ment to suc­cess­fully op­er­ate an ac­cel­er­a­tor ma­chine in which var­i­ous di­ag­nos­tic and beam con­trol sys­tem are in­te­grated. How­ever, the beam in­stru­men­ta­tion per­for­mance is often con­strained by a prompt ra­di­a­tion dose, in­te­grated ra­di­a­tion dose, op­er­a­tion (am­bi­ent) tem­per­a­ture and hu­mid­ity, avail­able space, and strength of em­bed­ded elec­tro­mag­netic fields at the mon­i­tor. These con­straints will limit the dy­namic range of op­er­a­tional beam pa­ra­me­ters, like the max­i­mum achiev­able beam power. A seam­less R&D ef­fort to de­velop the ra­di­a­tion hard­ened beam in­stru­men­ta­tions has been made for fu­ture multi-MW beam fa­cil­i­ties. In this pre­sen­ta­tion, I will show a major beam fa­cil­ity and beam in­stru­men­ta­tion which runs or plans a MW beam op­er­a­tion in the near fu­ture.  
slides icon Slides WEC1I1 [2.739 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1I1  
About • Received ※ 20 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 12 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC1C1 Improvement Design of a Beam Current Monitor Based on a Passive Cavity Under Heavy Heat Load and Radiation pick-up, target, cavity, radiation 205
 
  • P.-A. Duperrex, J.E. Bachmann, M. Rohrer, J.L. Sun
    PSI, Villigen PSI, Switzerland
 
  The High In­ten­sity Pro­ton Ac­cel­er­a­tor at PSI de­liv­ers a con­tin­u­ous pro­ton beam of up to 2.4 mA with a max­i­mum en­ergy of 590 MeV to two meson pro­duc­tion tar­gets, M and E, and then to the spal­la­tion tar­get. Eight me­ters down­stream from the tar­get E lo­cated a beam cur­rent mon­i­tor MHC5, which en­dure in­ten­sive scat­tered par­ti­cles from Tar­get E and cause large tem­per­a­ture vari­a­tion, fur­ther in­duce op­er­a­tion and cal­i­bra­tion prob­lems. To ad­dress these is­sues, a graphite mon­i­tor was de­signed to re­place the older alu­minum one. Based on years of op­er­a­tion ex­pe­ri­ences of this graphite cav­ity, im­prove­ment de­sign has been also con­sid­ered, in­clud­ing beam posi­ton pick­ups re­fine­ment, on-line cal­i­bra­tion meth­ods im­ple­men­ta­tion, as well as ma­nip­u­la­tion main­te­nance is­sues. De­tailed as­pects of the per­for­mance of the mon­i­tor and its im­prove­ment de­sign will be pre­sented in this paper.  
slides icon Slides WEC1C1 [4.024 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1C1  
About • Received ※ 01 October 2023 — Revised ※ 04 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 16 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C2 High Energy Cooling electron, undulator, emittance, linac 274
 
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
 
  The paper con­sid­ers meth­ods of par­ti­cle cool­ing ap­plic­a­ble to beam cool­ing in high en­ergy hadron col­lid­ers at the col­li­sion en­ergy. Presently, there are two major meth­ods of the cool­ing the elec­tron cool­ing and sto­chas­tic cool­ing. The later, in ap­pli­ca­tion to col­lid­ers, re­quires ex­cep­tion­ally large fre­quency band of cool­ing sys­tem. Presently two meth­ods are con­sid­ered. They are the op­ti­cal sto­chas­tic cool­ing (OSC) and the co­her­ent elec­tron cool­ing (CEC). OSC and CEC are es­sen­tially ex­ten­sions of mi­crowave sto­chas­tic cool­ing, op­er­at­ing in 1-10 GHz fre­quency range, to the op­ti­cal fre­quen­cies en­abling bands up to 30-300 THz. The OSC uses un­du­la­tors as a pickup and a kicker, and an op­ti­cal am­pli­fier for sig­nal am­pli­fi­ca­tion, while the CEC uses an elec­tron beam for all these func­tions. We dis­cuss major lim­i­ta­tions, ad­van­tages and dis­ad­van­tages of elec­tron and sto­chas­tic cool­ing sys­tems.  
slides icon Slides WEC3C2 [1.054 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C2  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA4C2 Beam Loss Simulations for the Proposed TATTOOS Beamline at HIPA target, simulation, cyclotron, septum 300
 
  • M. Hartmann, D.C. Kiselev, D. Reggiani, M. Seidel, J. Snuverink, H. Zhang
    PSI, Villigen PSI, Switzerland
  • M. Seidel
    EPFL, Lausanne, Switzerland
 
  IM­PACT (Iso­tope and Muon Pro­duc­tion with Ad­vanced Cy­clotron and Tar­get Tech­nol­ogy) is a pro­posed up­grade pro­ject for the high-in­ten­sity pro­ton ac­cel­er­a­tor fa­cil­ity (HIPA) at the Paul Scher­rer In­sti­tute (PSI). As part of IM­PACT, a new ra­dioiso­tope tar­get sta­tion, TAT­TOOS (Tar­geted Alpha Tu­mour Ther­apy and Other On­co­log­i­cal So­lu­tions) will allow to pro­duce promis­ing ra­dionu­clides for di­ag­no­sis and ther­apy of can­cer in doses suf­fi­cient for clin­i­cal stud­ies. The pro­posed TAT­TOOS beam­line and tar­get will be lo­cated near the UCN (Ultra Cold Neu­tron source) tar­get area, branch­ing off from the main UCN beam­line. In par­tic­u­lar, the 590 MeV pro­ton beam­line is in­tended to op­er­ate at a beam in­ten­sity of 100 uA (60 kW), re­quir­ing a con­tin­u­ous split­ting of the main beam via an elec­tro­sta­tic split­ter. Beam loss sim­u­la­tions to ver­ify safe op­er­a­tion have been per­formed and op­ti­mised using BDSIM, a Geant4 based tool en­abling the sim­u­la­tion of beam trans­porta­tion through mag­nets and par­ti­cle pas­sage through ac­cel­er­a­tor. In this study, beam pro­files, beam trans­mis­sion and power de­posits are gen­er­ated and stud­ied. Fi­nally, a quan­ti­ta­tive de­scrip­tion of the beam halo is in­tro­duced.  
slides icon Slides WEA4C2 [4.534 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA4C2  
About • Received ※ 29 September 2023 — Revised ※ 04 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC4C1 Magnetic Alloy Loaded Cavities in J-PARC and CERN cavity, booster, synchrotron, operation 316
 
  • C. Ohmori
    KEK, Ibaraki, Japan
  • M.M. Paoluzzi
    CERN, Meyrin, Switzerland
 
  Funding: This work was supported by JSPS KAKENHI Grant Number 19KK0078 and 18K11930.
Mag­netic Alloy loaded cav­i­ties have been used in seven syn­chro­trons in J-PARC and CERN. In this paper, we will re­view va­ri­ety of the cav­ity tech­nolo­gies to sat­isfy the re­quire­ments for the beam ac­cel­er­a­tion, de­cel­er­a­tion, ma­nip­u­la­tion and in­sta­bil­ity damp­ing. This paper also con­tains im­prove­ments of cav­ity cores by mag­netic an­neal­ing scheme, qual­ity con­trol of cores dur­ing pro­duc­tion, the cool­ing meth­ods of mag­netic alloy cores: di­rect water cool­ing and in­di­rect one using cop­per discs, con­trol of cav­ity band­widths from broad to nar­row bands, and the ways to drive RF cav­i­ties by tube and rad-hard solid-state am­pli­fiers.
 
slides icon Slides WEC4C1 [3.371 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C1  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1I1 Performance and Upgrade Considerations for the CSNS Injection injection, MMI, neutron, simulation 326
 
  • M.Y. Huang, S. Wang, S.Y. Xu
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work is jointly supported by the National Natural Science Foundation of China (Nos. 12075134) and the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120021).
For the pro­ton syn­chro­tron, the beam in­jec­tion is one of the most im­por­tant is­sues. Firstly, based on the China Spal­la­tion Neu­tron Source (CSNS), the in­jec­tion meth­ods have been com­pre­hen­sively stud­ied, in­clud­ing phase space paint­ing and H⁻ strip­ping. In order to solve the key dif­fi­cul­ties faced when the beam power ex­ceeds 50% of the de­sign value, flex­i­bil­ity in the CSNS de­sign has been ex­ploited to im­ple­ment the cor­re­lated paint­ing by using the ris­ing cur­rent curve of the pulse power sup­ply. The ef­fec­tive­ness of the new method has been ver­i­fied in the sim­u­la­tion and beam com­mis­sion­ing. By using the new method, the beam power on the tar­get has suc­cess­fully risen to the de­sign value. Sec­ondly, for the CSNS up­grade, the in­jec­tion en­ergy is in­creased from 80 MeV to 300 MeV and the in­jec­tion beam power is in­creased by about 19 times. Based on the CSNS ex­pe­ri­ence and sim­u­la­tion re­sults, it is hoped that the new in­jec­tion scheme can not only be com­pat­i­ble with cor­re­lated and anti-cor­re­lated paint­ing, but also greatly re­duces the peak tem­per­a­ture of the strip­ping foil. After in-depth study, a new paint­ing scheme has been pro­posed which has been ver­i­fied to be fea­si­ble in the sim­u­la­tion.
 
slides icon Slides THA1I1 [2.951 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1I1  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1I3 Predominantly Electric Storage Ring with Nuclear Spin Control Capability storage-ring, scattering, experiment, lattice 338
 
  • R.M. Talman
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  A pre­dom­i­nantly elec­tric stor­age ring with weak su­per­im­posed mag­netic bend­ing is shown to be ca­pa­ble of stor­ing two dif­fer­ent nu­clear iso­tope bunches, such as he­lion and deuteron, co-trav­el­ing with dif­fer­ent ve­loc­i­ties on the same cen­tral orbit. ‘‘Rear-end’’ col­li­sions oc­cur­ring pe­ri­od­i­cally in a full ac­cep­tance par­ti­cle de­tec­tor/po­larime­ter, allow the (pre­vi­ously in­ac­ces­si­ble) di­rect mea­sure­ment of the spin de­pen­dence of nu­clear trans­mu­ta­tion for cen­ter of mass (CM) ki­netic en­er­gies rang­ing from hun­dreds of keV up to­ward pion pro­duc­tion thresh­olds. These are ‘‘rear-end col­li­sions’’ oc­cur­ring as faster stored bunches pass through slower bunches. An in­ex­pen­sive fa­cil­ity ca­pa­ble of meet­ing these re­quire­ments is de­scribed, with nu­clear chan­nel h + d arrow α + p as ex­am­ple.  
slides icon Slides THA1I3 [0.860 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1I3  
About • Received ※ 07 December 2023 — Accepted ※ 11 December 2023 — Issued ※ 25 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC1C1 Transverse Emittance Reconstruction Along the Cycle of the CERN Antiproton Decelerator emittance, electron, operation, antiproton 358
 
  • G. Russo, B. Dupuy, D. Gamba, L. Ponce
    CERN, Meyrin, Switzerland
 
  The pre­cise knowl­edge of the trans­verse beam emit­tances on the dif­fer­ent en­ergy plateaus of the CERN An­tipro­ton De­cel­er­a­tor (AD) ring is im­por­tant for as­sess­ing the ma­chine per­for­mance and beam qual­ity. This paper pre­sents a method­ol­ogy for re­con­struct­ing trans­verse beam pro­files from scraper mea­sure­ments em­ploy­ing the Abel trans­form. The pro­posed method­ol­ogy pro­vides a pre­cise, re­pro­ducible and user in­de­pen­dent way of com­put­ing the beam emit­tance, as well as a use­ful tool to qual­i­ta­tively track ma­chine per­for­mance in rou­tine op­er­a­tion. As dis­cussed in this paper, its ap­pli­ca­tion has al­ready been proven cru­cial for the op­er­a­tional set­ting-up of the sto­chas­tic cool­ing and for de­ter­min­ing the proper func­tion­ing of the elec­tron cool­ing in AD. It also opens up the pos­si­bil­ity for de­tailed bench­mark­ing stud­ies of the cool­ing per­for­mance in dif­fer­ent ma­chine and beam con­di­tions.  
slides icon Slides THC1C1 [2.426 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THC1C1  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC2C1 Shower Simulations for the CERN Proton Synchrotron Internal Dump and Comparison with Beam Loss Monitor Data simulation, flattop, closed-orbit, operation 389
 
  • S. Niang, L.S. Esposito, M. Giovannozzi, C. Hernalsteens, A. Huschauer, T. Pugnat
    CERN, Meyrin, Switzerland
  • D. Domange
    ULB, Bruxelles, Belgium
 
  Dur­ing the Long Shut­down 2 (LS2), two new in­ter­nal dumps (TDIs) were in­stalled and suc­cess­fully put into op­er­a­tion in the CERN Pro­ton Syn­chro­tron (PS) to with­stand the in­tense and bright beams pro­duced for the High Lu­mi­nos­ity LHC. TDIs serve as safety de­vices de­signed to rapidly enter the beam tra­jec­tory and stop the beam over mul­ti­ple turns. Due to their de­sign, the TDI only ab­sorbs a frac­tion of the sec­ondary par­ti­cle shower pro­duced by beam par­ti­cles that im­pinge on it. Start­ing from im­pacts com­puted by multi-turn beam dy­nam­ics sim­u­la­tions, de­tailed shower sim­u­la­tions were per­formed with FLUKA to as­sess the ra­di­a­tion field’s im­pact on the down­stream equip­ment, with a par­tic­u­lar em­pha­sis on the dose mea­sured by Beam Loss Mon­i­tors. The nu­mer­i­cal data ob­tained from the sim­u­la­tions are com­pared with the ex­per­i­men­tal data col­lected dur­ing PS op­er­a­tion.  
slides icon Slides THC2C1 [2.092 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THC2C1  
About • Received ※ 28 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP07 Preliminary Results on Transverse Phase Space Tomography at KOMAC linac, emittance, quadrupole, diagnostics 415
 
  • S. Lee, J.J. Dang, D.-H. Kim, H.S. Kim, H.-J. Kwon, S.P. Yun
    KOMAC, KAERI, Gyeongju, Republic of Korea
 
  Funding: This work has been supported through KOMAC operation fund of KAERI by Ministry of Science and ICT, the Korean government (KAERI ID no. : 524320-23)
Beam loss is a crit­i­cal issue to be avoid in high power pro­ton ac­cel­er­a­tors due to ma­chine pro­tec­tion from ra­di­a­tion. Non­lin­ear processes add higher order mo­ments and cause halo and tail struc­tures to a beam, re­sult­ing in beam losses. Hence it be­comes more im­por­tant to char­ac­ter­ize beams for high power ac­cel­er­a­tors. Con­ven­tional beam di­ag­nos­tic meth­ods can mea­sure only ap­prox­i­mate el­lip­ti­cal fea­tures of a beam and are not suit­able for high power beams. To­mog­ra­phy method re­con­structs a mul­ti­di­men­sional dis­tri­b­u­tion from its lower-di­men­sional pro­jec­tions. We used this method to re­con­struct the 4D trans­verse (x, x’, y, y’) phase space dis­tri­b­u­tion of the beam from the ac­cel­er­a­tor at KOMAC (Korea Mul­ti­pur­pose Ac­cel­er­a­tor Com­plex). RFQ BTS (Radio Fre­quency Quadru­pole Beam Test Sys­tem) was con­structed and com­mis­sioned in 2022. In the BTS, we per­formed to­mog­ra­phy ex­periements and ob­tained pre­lim­i­nary re­sults on 4D trans­verse phase space beam dis­tri­b­u­tion. We also have ap­plied the to­mog­ra­phy mea­sure­ment tech­niques to the 100 MeV pro­ton linac. In this paper, we de­scribe the to­mog­ra­phy mea­sure­ment sys­tem and pre­sent the pre­lim­i­nary re­sults ob­tained from the BTS and the 100 MeV pro­ton linac.
 
slides icon Slides THAFP07 [2.018 MB]  
poster icon Poster THAFP07 [1.035 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP07  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP02 FFA Magnet for Pulsed High Power Proton Driver lattice, software, operation, closed-orbit 436
 
  • J.-B. Lagrange, C.W. Jolly, D.J. Kelliher, A.P. Letchford, S. Machida, I. Rodríguez, C.T. Rogers, J.D. Speed
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • S.J. Brooks
    BNL, Upton, New York, USA
  • T.-J. Kuo
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Fixed Field Al­ter­nat­ing gra­di­ent (FFA) ac­cel­er­a­tor is con­sid­ered as a pro­ton dri­ver for the next gen­er­a­tion spal­la­tion neu­tron source (ISIS-II). To demon­strate its suit­abil­ity for high in­ten­sity op­er­a­tion, an FFA pro­ton pro­to­type ring is planned at RAL, called FETS-FFA. The main mag­nets are a crit­i­cal part of the ma­chine, and sev­eral char­ac­ter­is­tics of these mag­nets re­quire at­ten­tion, such as dou­blet spi­ral struc­ture, es­sen­tial op­er­a­tional flex­i­bil­ity in terms of ma­chine op­tics and con­trol of the fringe field ex­tent from the non­lin­ear op­tics point of view. This paper will dis­cuss the de­sign of the pro­to­type mag­net for FETS-FFA ring.  
poster icon Poster THBP02 [5.871 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP02  
About • Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP04 Machine Protection System for the Proposed TATTOOS Beamline at HIPA target, operation, cyclotron, diagnostics 443
 
  • J. Snuverink, P. Bucher, R. Eichler, M. Hartmann, D.C. Kiselev, D. Reggiani, E. Zimoch
    PSI, Villigen PSI, Switzerland
 
  IM­PACT (Iso­tope and Muon Pro­duc­tion with Ad­vanced Cy­clotron and Tar­get Tech­nol­ogy) is a pro­posed up­grade pro­ject for the High In­ten­sity Pro­ton Ac­cel­er­a­tor (HIPA) at the Paul Scher­rer In­sti­tute (PSI). As part of IM­PACT, a new ra­dioiso­tope tar­get sta­tion, TAT­TOOS (Tar­geted Alpha Tu­mour Ther­apy and Other On­co­log­i­cal So­lu­tions) is planned. The TAT­TOOS beam­line and tar­get will be lo­cated near the UCN (Ultra Cold Neu­tron source) tar­get area, branch­ing off from the main UCN beam­line. In par­tic­u­lar, the 590 MeV pro­ton beam­line is de­signed to op­er­ate at a beam in­ten­sity of 100 ¿A (60 kW), re­quir­ing a con­tin­u­ous split­ting of the main beam by an elec­tro­sta­tic split­ter. The phi­los­o­phy of the ma­chine pro­tec­tion sys­tem (MPS) for the TAT­TOOS beam­line will not dif­fer sig­nif­i­cantly from the one al­ready im­ple­mented for HIPA. How­ever, it is par­tic­u­larly im­por­tant for TAT­TOOS to avoid dam­age to the tar­get due to ir­reg­u­lar beam con­di­tions. We will show the di­ag­nos­tic sys­tems in­volved and how the re­quire­ments of the ma­chine pro­tec­tion sys­tem can be met. Emer­gency sce­nar­ios and pro­tec­tive mea­sures are also dis­cussed.  
poster icon Poster THBP04 [3.228 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP04  
About • Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP13 Recent Developments with the New Tools for Collimation Simulations in Xsuite collimation, simulation, coupling, scattering 474
 
  • F.F. Van der Veken, A. Abramov, G. Broggi, F. Cerutti, M. D’Andrea, D. Demetriadou, L.S. Esposito, G. Hugo, G. Iadarola, B. Lindström, S. Redaelli, V. Rodin, N. Triantafyllou
    CERN, Meyrin, Switzerland
 
  Sim­u­la­tions of sin­gle-par­ti­cle track­ing in­volv­ing col­li­ma­tion sys­tems need ded­i­cated tools to per­form the dif­fer­ent tasks needed. These in­clude the ac­cu­rate de­scrip­tion of par­ti­cle-mat­ter in­ter­ac­tions when a tracked par­ti­cle im­pacts a col­li­ma­tor jaw; a de­tailed aper­ture model to iden­tify the lon­gi­tu­di­nal lo­ca­tion of losses; and oth­ers. One such tool is the K2 code in Six­Track, which de­scribes the scat­ter­ing of high-en­ergy pro­tons in mat­ter. This code has re­cently been ported into the Xsuite track­ing code that is being de­vel­oped at CERN. An­other ap­proach is to cou­ple the track­ing with ex­ist­ing tools, such as FLUKA or Geant4, that offer bet­ter de­scrip­tions of par­ti­cle-mat­ter in­ter­ac­tions and can treat lep­ton and ion beams. This in­cludes the gen­er­a­tion of sec­ondary par­ti­cles and frag­men­ta­tion when track­ing ions. In ad­di­tion to the de­vel­op­ment of cou­pling with Geant4, the Six­Track-FLUKA cou­pling has re­cently been trans­lated and in­te­grated into the Xsuite en­vi­ron­ment as well. In this paper, we pre­sent the on­go­ing de­vel­op­ment of these tools. A thor­ough test­ing of the new im­ple­men­ta­tion was per­formed, using as case stud­ies var­i­ous col­li­ma­tion lay­out con­fig­u­ra­tions for the LHC Run 3.  
poster icon Poster THBP13 [2.785 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP13  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP24 RCS and Accumulator Rings Designs for ISIS II injection, space-charge, emittance, lattice 519
 
  • D.J. Adams
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • H.V. Cavanagh, I.S.K. Gardner, B.S. Kyle, H. Rafique, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the spal­la­tion neu­tron source at the Ruther­ford Ap­ple­ton Lab­o­ra­tory in the UK, which pro­vides 0.2 MW of beam power via a 50 Hz, 800 MeV pro­ton RCS. De­tailed stud­ies are now un­der­way to find the op­ti­mal con­fig­u­ra­tion for a next gen­er­a­tion, short-pulsed neu­tron source that will de­fine a major ISIS up­grade, with con­struc­tion be­gin­ning ~2031. De­ter­min­ing the op­ti­mal spec­i­fi­ca­tion for such a fa­cil­ity is the sub­ject of an on­go­ing study in­volv­ing neu­tron users, tar­get and in­stru­ment ex­perts. The ac­cel­er­a­tor de­signs being con­sid­ered for the MW beam pow­ers re­quired, in­clude pro­pos­als ex­ploit­ing FFA rings as well as con­ven­tional ac­cu­mu­la­tor and RCS rings. This paper sum­marises work on physics de­signs for the con­ven­tional rings. De­tails of lat­tice de­signs, in­jec­tion and ex­trac­tion sys­tems, cor­rec­tion sys­tems as well as de­tailed 3D PIC sim­u­la­tions used to en­sure 0.1% losses and low foil hits are pre­sented. De­signs for a 0.4 to 1.2 GeV RCS and 1.2 GeV AR are out­lined. Work on the next stages of the study are also sum­marised to bench­mark and min­imise pre­dicted losses, and thus max­imise the high in­ten­sity limit of de­signs.  
poster icon Poster THBP24 [3.231 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP24  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP36 Study of the Performance of the CERN Proton Synchrotron Internal Dump simulation, beam-losses, vacuum, synchrotron 555
 
  • T. Pugnat, L.S. Esposito, M. Giovannozzi, C. Hernalsteens, A. Huschauer, S. Niang
    CERN, Meyrin, Switzerland
  • D. Domange, E. Gnacadja, R. Tesse
    ULB, Bruxelles, Belgium
 
  In the frame­work of the LHC In­jec­tor Up­grade pro­ject, a new in­ter­nal dump for the CERN Pro­ton Syn­chro­tron (PS) has been de­signed, in­stalled, and suc­cess­fully com­mis­sioned. This de­vice is meant to move rapidly into the beam and stop charged par­ti­cles over sev­eral turns to pro­vide pro­tec­tion to the PS hard­ware against beam-in­duced dam­age. The per­for­mance of the dump should en­sure ef­fi­cient use through­out the PS en­ergy range, i.e. from in­jec­tion at 2 GeV (ki­netic en­ergy) to flat top at 26 GeV (total en­ergy). In this paper, de­tailed nu­mer­i­cal sim­u­la­tions are pre­sented, car­ried out with a com­bi­na­tion of so­phis­ti­cated beam dy­nam­ics and beam-mat­ter in­ter­ac­tion codes, as­sess­ing the be­hav­iour of stopped or scat­tered par­ti­cles. The re­sults of these nu­mer­i­cal sim­u­la­tions are com­pared with the data col­lected dur­ing the rou­tine op­er­a­tion of the PS and its in­ter­nal dump.  
poster icon Poster THBP36 [0.609 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP36  
About • Received ※ 26 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP42 Longitudinal Loss of Landau Damping in Double Harmonic RF Systems below Transition Energy synchrotron, damping, impedance, space-charge 575
 
  • L. Intelisano, H. Damerau, I. Karpov
    CERN, Meyrin, Switzerland
 
  Lan­dau damp­ing plays a cru­cial role in en­sur­ing sin­gle-bunch sta­bil­ity in hadron syn­chro­trons. In the lon­gi­tu­di­nal plane, loss of Lan­dau damp­ing (LLD) oc­curs when a co­her­ent mode of os­cil­la­tion moves out of the in­co­her­ent syn­chro­tron fre­quency band. The LLD thresh­old is stud­ied for a purely in­duc­tive im­ped­ance below tran­si­tion en­ergy, specif­i­cally con­sid­er­ing the com­mon case of dou­ble har­monic RF sys­tems op­er­at­ing in counter-phase at the bunch po­si­tion. The ad­di­tional fo­cus­ing force due to beam-in­duced volt­age dis­torts the po­ten­tial well, ul­ti­mately col­laps­ing the bucket. The lim­it­ing con­di­tions for a bi­no­mial par­ti­cle dis­tri­b­u­tion are cal­cu­lated. Fur­ther­more, the con­tri­bu­tion fo­cuses on the con­fig­u­ra­tion of the higher-har­monic RF sys­tem at four times the fun­da­men­tal RF fre­quency op­er­at­ing in phase. In this case, the LLD thresh­old shows a non-mo­not­o­nic be­hav­ior with a zero thresh­old where the de­riv­a­tive of the syn­chro­tron fre­quency dis­tri­b­u­tion is pos­i­tive. The find­ings are ob­tained em­ploy­ing semi-an­a­lyt­i­cal cal­cu­la­tions using the MELODY code.  
poster icon Poster THBP42 [1.710 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP42  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP44 ImpactX Modeling of Benchmark Tests for Space Charge Validation space-charge, focusing, emittance, cavity 583
 
  • C.E. Mitchell, M. Garten, A. Huebl, R. Lehé, J. Qiang, R.T. Sandberg, J.-L. Vay
    LBNL, Berkeley, California, USA
 
  The code Im­pactX rep­re­sents the next gen­er­a­tion of the par­ti­cle-in-cell code IM­PACT-Z, fea­tur­ing s-based sym­plec­tic track­ing with 3D space charge, par­al­lelism with GPU ac­cel­er­a­tion, adap­tive mesh-re­fine­ment, and mod­ern­ized lan­guage fea­tures. With such a code comes a re­newed need for space charge val­i­da­tion using well-de­fined bench­marks. For this pur­pose, the code is con­tin­u­ously checked against a test suite of ex­actly-solv­able prob­lems. The suite in­cludes field cal­cu­la­tion tests, dy­nam­i­cal tests in­volv­ing coast­ing or sta­tion­ary beams, and beams matched to pe­ri­odic fo­cus­ing chan­nels. To study the long-time multi-turn per­for­mance of the code in a more com­plex set­ting, we in­ves­ti­gate prob­lems in­volv­ing high-in­ten­sity stor­age rings, such as the GSI bench­mark prob­lem for space charge in­duced trap­ping. Com­par­isons against ex­ist­ing codes are made where pos­si­ble.  
poster icon Poster THBP44 [1.020 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP44  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP46 Simulation of the ESS Proton Beam Window Scattering target, scattering, simulation, ion-source 591
 
  • E.D. Fackelman, E. Adli, H.E. Gjersdal, K.N. Sjobak
    University of Oslo, Oslo, Norway
  • Y. Levinsen, A. Takibayev, C.A. Thomas
    ESS, Lund, Sweden
 
  The Eu­ro­pean Spal­la­tion Source pro­duces neu­trons used for sci­ence by de­liv­er­ing a 5MW pro­ton beam to a tung­sten tar­get. The pro­ton beam pa­ra­me­ters must re­main within a well-de­fined range dur­ing all phases of fa­cil­ity ex­ploita­tion. The pro­ton beam pa­ra­me­ters are mea­sured and mon­i­tored by an in­stru­men­ta­tion suite, among which are two beam imag­ing sys­tems. Pa­ra­me­ters such as po­si­tion and beam cur­rent den­sity can be cal­cu­lated from the im­ages, sup­port­ing beam tun­ing and op­er­a­tion. How­ever, one of the two sys­tems may be af­fected by beam scat­ter­ing. In this paper, we will focus on mod­el­ling the im­pact of the scat­ter­ing on the beam on tar­get dis­tri­b­u­tion. The mod­el­ling process, in­volv­ing sim­u­la­tion codes such as Geant4 and two-di­men­sional con­vo­lu­tion in Mat­lab, is de­scribed. Ini­tially, Geant4 sim­u­lates a scat­tered pen­cil beam. The re­sult­ing dis­tri­b­u­tion is fit­ted and can be used sim­i­larly to an in­stru­ment re­sponse in image pro­cess­ing to model any pos­si­ble beam dis­tri­b­u­tion. Fi­nally, we dis­cuss the re­sults of the scat­tered beam imag­ing model, show­ing the range of ap­pli­ca­tions of the model and the im­pact of scat­ter­ing on the beam pa­ra­me­ters.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP46  
About • Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP48 Latest Advances in Targetry Systems at CERN and Exciting Avenues for Future Endeavours target, antiproton, neutron, experiment 599
 
  • R. Franqueira Ximenes, O. Aberle, M. Calviani, R. Esposito, J.L. Grenard, T. Griesemer, A.R. Romero Francia, C. Torregrosa
    CERN, Meyrin, Switzerland
 
  CERN’s ac­cel­er­a­tor com­plex of­fers di­verse tar­get sys­tems for a range of sci­en­tific pur­suits, in­clud­ing vary­ing beam en­er­gies, in­ten­si­ties, pulse lengths, and ob­jec­tives. Fu­ture high-in­ten­sity fixed tar­get ex­per­i­ments aim to ad­vance this field fur­ther. This con­tri­bu­tion high­lights up­graded op­er­a­tional tar­get sys­tems, en­hanc­ing CERN’s physics en­deav­ours. One ex­am­ple is the third-gen­er­a­tion nTOF spal­la­tion neu­tron tar­get, using a ni­tro­gen-cooled pure lead sys­tem im­pacted by a 20 GeV/c pro­ton beam. An­other fo­cuses on re­cent an­tipro­ton pro­duc­tion tar­get up­grades, with a high-in­ten­sity 26 GeV/c beam col­lid­ing with a nar­row-air-cooled irid­ium tar­get. Look­ing ahead, new high-power tar­get sys­tems are planned. One aims to dis­cover hid­den par­ti­cles using a 350-kW high-Z pro­duc­tion tar­get, while an­other en­hances kaon physics through a 100 kW low-Z tar­get. This ar­ti­cle pro­vides an overview of cur­rent tar­get sys­tems at CERN, de­tail­ing beam-in­ter­cept­ing de­vices and en­gi­neer­ing as­pects. It also pre­views up­com­ing fa­cil­i­ties that could soon be im­ple­mented at CERN.  
poster icon Poster THBP48 [63.760 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP48  
About • Received ※ 07 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP49 Collimation of 400 MJ Beams at the LHC: The First Step Towards the HL-LHC Era collimation, luminosity, operation, impedance 603
 
  • S. Redaelli, A. Abramov, D.B. Baillard, R. Bruce, R. Cai, F. Carra, M. D’Andrea, M. Di Castro, L. Giacomel, P.D. Hermes, B. Lindström, D. Mirarchi, N. Mounet, F.-X. Nuiry, A. Perillo Marcone, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • R. Cai
    EPFL, Lausanne, Switzerland
  • A. Vella
    University of Malta, Information and Communication Technology, Msida, Malta
 
  Funding: Work supported by the HL-LHC project.
An im­por­tant up­grade pro­gramme is planned for the col­li­ma­tion sys­tem of the CERN Large Hadron Col­lider (LHC) in order to meet the chal­lenges of the up­com­ing High-Lu­mi­nos­ity LHC (HL-LHC) pro­ject. A first stage of the HL-LHC up­grade was al­ready de­ployed dur­ing the last LHC Long Shut­down, of­fer­ing im­por­tant im­prove­ments of the col­li­ma­tion clean­ing, a sig­nif­i­cant re­duc­tion of the im­ped­ance con­tri­bu­tion and bet­ter clean­ing of col­li­sional de­bris, in par­tic­u­lar for ion-ion col­li­sions. This up­grade pro­vides a crit­i­cal op­por­tu­nity to ex­plore the LHC in­ten­sity lim­its dur­ing the LHC Run 3 and can pro­vide cru­cial feed­back to re­fine up­grade plans and op­er­a­tional sce­nar­ios in the HL-LHC era. This paper de­scribes the per­for­mance of the up­graded LHC col­li­ma­tion sys­tem that has al­ready en­abled stored-beam en­er­gies larger than 400 MJ at the un­prece­dented beam en­ergy of 6.8 TeV, and re­views fur­ther up­grade plans en­vis­aged to reach 700 MJ beams at the HL-LHC.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP49  
About • Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP50 Fermilab Main Injector and Recycler Operations in the Megawatt Era operation, booster, experiment, electron 607
 
  • A.P. Schreckenberger
    Fermilab, Batavia, Illinois, USA
 
  Sig­nif­i­cant up­grades to Fer­mi­lab¿s ac­cel­er­a­tor com­plex have ac­com­pa­nied the de­vel­op­ment of LBNF and DUNE. These im­prove­ments will fa­cil­i­tate 1-MW op­er­a­tion of the NuMI beam for the first time this year through changes to the Re­cy­cler slip-stack­ing pro­ce­dure and short­en­ing of the Main In­jec­tor ramp time. The mod­i­fi­ca­tions to the Re­cy­cler slip-stack­ing and ef­fort to re­duce the Main In­jec­tor ramp time will be dis­cussed. Ad­di­tion­ally, de­tails re­gard­ing fur­ther short­en­ing of the ramp time and the im­pact on fu­ture ac­cel­er­a­tor op­er­a­tions are pre­sented.  
poster icon Poster THBP50 [0.923 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP50  
About • Received ※ 25 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP53 Commissioning and Operation of the Collimation System at the RCS of CSNS collimation, controls, emittance, MMI 615
 
  • S.Y. Xu, J. Chen, S. Wang
    IHEP, Beijing, People’s Republic of China
  • K. Zhou
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  For high-in­ten­sity pro­ton syn­chro­trons, min­i­miz­ing par­ti­cle losses dur­ing ma­chine op­er­a­tion is es­sen­tial to avoid ra­di­a­tion dam­age. Un­con­trolled beam loss posed a sig­nif­i­cant chal­lenge to achiev­ing higher beam in­ten­sity and power for high-in­ten­sity pro­ton syn­chro­trons. The beam col­li­ma­tion sys­tem can re­move halo par­ti­cles and to lo­cal­ize the beam loss. The use of col­li­ma­tion sys­tem is an im­por­tant means of con­trol­ling un­con­trolled beam loss in high-power pro­ton ac­cel­er­a­tors. To re­duce the un­con­trolled beam loss, a trans­verse col­li­ma­tion sys­tem was de­signed for the RCS of CSNS. The de­sign trans­verse col­li­ma­tor is a two-stage col­li­ma­tor. Dur­ing the beam com­mis­sion­ing of CSNS, the de­signed two-stage col­li­ma­tor has been changed to one-stage col­li­ma­tor to over­come the prob­lem of low col­li­ma­tion ef­fi­ciency caused by in­suf­fi­cient phase shift be­tween the pri­mary and sec­ondary col­li­ma­tors. By op­ti­miz­ing the col­li­ma­tion sys­tem, the beam loss is well lo­cal­ized in the col­li­ma­tor area, ef­fec­tively re­duc­ing un­con­trolled beam loss. The beam power of CSNS achieved the de­sign value of 100 kW with small un­con­trolled beam loss.  
poster icon Poster THBP53 [0.780 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP53  
About • Received ※ 30 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP57 A Novel RF Power Source for the ESS-Bilbao Ion Source controls, ion-source, klystron, EPICS 621
 
  • S. Masa, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, R. Miracoli, S. Varnasseri
    ESS Bilbao, Zamudio, Spain
 
  This paper pre­sents the im­prove­ments in the ESS Bil­bao Pro­ton Ion Source by re­plac­ing the am­pli­fied radio fre­quency (RF) pulse of a Kly­stron-based am­pli­fi­ca­tion sys­tem using a Solid-State Power Am­pli­fier (SSPA). This new am­pli­fi­ca­tion sys­tem is based on a 1kW SSPA (2.7 GHz), a Com­pact-RIO (cRIO) de­vice, a volt­age-con­trolled RF at­ten­u­a­tor and aux­il­iary elec­tron­ics. The Ex­per­i­men­tal Physics and In­dus­trial Con­trol Sys­tem (EPICS) serves as dis­trib­uted con­trol sys­tem (DCS) for con­trol­ling and mon­i­tor­ing the data re­quired to achieve a 1.5 ms flat and sta­ble pulse at rep­e­ti­tion rate of 14 Hz. The fol­low­ing lines de­scribe the struc­tural and con­trol sys­tem changes done in the ion source due to the ad­di­tion of the SSPA-based am­pli­fi­ca­tion sys­tem, along with the re­sults of the pro­ton beam ex­trac­tion tests that demon­strate how this sys­tem can serve as a vi­able sub­sti­tute for the Kly­stron-based am­pli­fi­ca­tion sys­tem.  
poster icon Poster THBP57 [2.265 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP57  
About • Received ※ 28 September 2023 — Accepted ※ 09 October 2023 — Issued ※ 26 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP59 Tomographic Longitudinal Phase Space Reconstruction of Bunch Compression at ISIS synchrotron, simulation, operation, extraction 625
 
  • B.S. Kyle, H.V. Cavanagh, A. Seville, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is an 800 MeV, high in­ten­sity, rapid-cy­cling syn­chro­tron (RCS) used as a dri­ver for a spal­la­tion neu­tron and muon spec­troscopy (¿SR) fa­cil­ity. The in­ten­sity-lim­ited beam and RCS op­er­a­tion at ISIS poses sig­nif­i­cant chal­lenges, with non-adi­a­batic ac­cel­er­a­tion and space charge forces re­sult­ing in dis­tor­tions to the Hamil­ton­ian lon­gi­tu­di­nal dy­nam­ics. Ef­fec­tive mod­el­ling of the ma­chine and bench­mark­ing of mod­els with beam mea­sure­ments is es­sen­tial both to im­prov­ing ma­chine per­for­mance, and to the de­vel­op­ment of the pro­posed ISIS II fa­cil­ity. The to­mo­graphic prin­ci­ple is a well-es­tab­lished tool for the re­con­struc­tion of the lon­gi­tu­di­nal phase space (LPS) of syn­chro­tron beams. Is it op­er­a­tionally de­sir­able for the ISIS ac­cel­er­a­tor to pro­vide lon­gi­tu­di­nally com­pressed pro­ton beams for ¿SR in­stru­men­ta­tion. A new bunch com­pres­sion scheme has been de­vel­oped and val­i­dated using to­mog­ra­phy. A re­con­struc­tion of the LPS of the ISIS high-in­ten­sity pro­ton beam is pre­sented, along with ac­com­pa­ny­ing bench­mark­ing mea­sure­ments and beam physics sim­u­la­tions.  
poster icon Poster THBP59 [0.907 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP59  
About • Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 20 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1I1 Status of the IOTA Proton Injector rfq, electron, MEBT, LEBT 629
 
  • D.R. Edstrom, D.R. Broemmelsiek, K. Carlson, J.-P. Carneiro, H. Piekarz, A.L. Romanov, A.V. Shemyakin, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The IOTA Pro­ton In­jec­tor (IPI), cur­rently under in­stal­la­tion at the Fer­mi­lab Ac­cel­er­a­tor Sci­ence and Tech­nol­ogy fa­cil­ity, is a beam­line ca­pa­ble of de­liv­er­ing 20-mA pulses of pro­tons at 2.5 MeV to the In­te­grable Op­tics Test Ac­cel­er­a­tor (IOTA) ring. First beam in the IPI beam­line is an­tic­i­pated in 2023, when it will op­er­ate along­side the ex­ist­ing elec­tron in­jec­tor beam­line to fa­cil­i­tate fur­ther fun­da­men­tal physics re­search and con­tin­ued de­vel­op­ment of novel ac­cel­er­a­tor tech­nolo­gies in the IOTA ring. This re­port de­tails the ex­pected op­er­a­tional pro­file, known chal­lenges, and the cur­rent state of in­stal­la­tion.
 
slides icon Slides FRA1I1 [6.466 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA1I1  
About • Received ※ 08 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRC1I1 The Beam Destinations for the Commissioning of the ESS High Power Normal Conducting Linac DTL, MMI, linac, LEBT 643
 
  • E.M. Donegani, V. Grishin, E. Laface, C. Neto, A. Olsson, L. Page, T.J. Shea
    ESS, Lund, Sweden
  • V.V. Bertrand
    PANTECHNIK, Bayeux, France
  • I. Bustinduy
    ESS Bilbao, Zamudio, Spain
  • M. Ruelas
    RadiaBeam, Santa Monica, California, USA
 
  At the Eu­ro­pean Spal­la­tion Source (ESS) in Lund (Swe­den), the com­mis­sion­ing of the high-power nor­mal con­duct­ing linac started in 2018. This paper deals with the beam des­ti­na­tions for the com­mis­sion­ing phases with ini­tially the pro­ton source and LEBT, then the MEBT and lately four DTL sec­tions. The beam des­ti­na­tions were de­signed to with­stand the ESS com­mis­sion­ing beam modes (with pro­ton cur­rent up to 62.5mA, pulse length up to 50E-6s and rep­e­ti­tion rates up to 14Hz). The EPICS-based con­trol sys­tem al­lows mea­sure­ments of the pro­ton cur­rent and pulse length in real-time; it con­trols the mo­tion and the power sup­pli­ers, and it also mon­i­tors the water cool­ing sys­tems. Spe­cial focus will be on the re­sults of thermo-me­chan­i­cal sim­u­la­tions in MCNP/ANSYS to en­sure safe ab­sorp­tion and dis­si­pa­tion of the vol­u­met­ric power-de­po­si­tion. The de­vices’ ma­te­ri­als were cho­sen not only to cope with the high-power pro­ton-beam, but also to be vac­uum-com­pat­i­ble, to min­i­mize the ac­ti­va­tion of the beam des­ti­na­tions them­selves and the resid­ual dose nearby. The re­sults of neu­tron­ics sim­u­la­tions will be sum­ma­rized with spe­cial focus on the shield­ing strat­egy, the op­er­a­tional lim­its and re­lo­ca­tion pro­ce­dures.  
slides icon Slides FRC1I1 [6.348 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRC1I1  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRC1I3 Devices for High-Efficiency Slow Extraction at J-PARC Main Ring septum, extraction, betatron, cathode 656
 
  • R. Muto, T. Kimura, S. Murasugi, K. Numai, K. Okamura, Y. Shirakabe, M. Tomizawa, E. Yanaoka
    KEK, Ibaraki, Japan
  • A. Matsumura
    Nihon Advanced Technology Co., Ltd, Ibaraki, Nakagun, Tokaimura, Japan
 
  J-PARC Main Ring (MR) is a syn­chro­tron that ac­cel­er­ates pro­tons up to 30 GeV and sup­plies them to the Neu­trino Ex­per­i­men­tal Fa­cil­ity and the Hadron Ex­per­i­men­tal Fa­cil­ity (HEF). Beam ex­trac­tion from MR to HEF is per­formed by slow ex­trac­tion using third-or­der res­o­nance. In the slow ex­trac­tion a de­vice called an elec­tro­sta­tic sep­tum (ESS) is used to scrape out the beam, and it is im­por­tant to re­duce the beam loss at the sep­tum elec­trode of the ESS in order to sup­ply a high-in­ten­sity beam. So far, we have achieved a slow ex­trac­tion ef­fi­ciency of 99.5% by de­vel­op­ing an ESS with a thin sep­tum elec­trode and tun­ing the bump orbit to re­duce the width of the an­gu­lar dis­tri­b­u­tion of pro­tons at the ESS. In ad­di­tion, a col­li­ma­tor is in­stalled down­stream of the ESS to ab­sorb par­ti­cles scat­tered by the sep­tum elec­trode, thereby re­duc­ing ac­ti­va­tion of the com­po­nents down­stream. In order to achieve fur­ther re­duc­tion of the beam loss, we are cur­rently con­sid­er­ing to in­stall beam dif­fusers and/or bent sil­i­con crys­tals at the up­stream of the ESS. In this talk, we will pre­sent the cur­rent sta­tus of the slow ex­trac­tion de­vices and fu­ture plans to fur­ther im­prove the ex­trac­tion ef­fi­ciency.  
slides icon Slides FRC1I3 [3.167 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRC1I3  
About • Received ※ 18 October 2023 — Revised ※ 19 October 2023 — Accepted ※ 23 October 2023 — Issued ※ 01 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I4 Summary of the Commissioning and Operations and Performance Working Group for HB2023 Workshop operation, MMI, linac, diagnostics 675
 
  • N. Milas
    ESS, Lund, Sweden
  • M. Bai
    SLAC, Menlo Park, California, USA
  • S. Wang
    IHEP, Beijing, People’s Republic of China
 
  Sum­mary for WGD.  
slides icon Slides FRA2I4 [11.582 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I4  
About • Received ※ 06 November 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 November 2023 — Issued ※ 17 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)