Keyword: hadron
Paper Title Other Keywords Page
MOA3I1 Beam Dynamics Challenges in the Design of the Electron-Ion Collider electron, polarization, proton, emittance 23
 
  • Y. Luo, M. Blaskiewicz, D. Marx, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • A. Blednykh, C. Montag, V. Ptitsyn, V.H. Ranjbar, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • S. Nagaitsev
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Electron-Ion Collider (EIC), presently under construction at Brookhaven National Laboratory, will collide polarized high-energy electron beams with hadron beams, achieving luminosities up to 1 × 1034 cm¿2 s¿1 in the center-of-mass energy range of 20-140 GeV. To achieve such high luminosity, we adopt high bunch intensities for both beams, small and flat transverse beam sizes at the interaction point (IP), a large crossing angle of 25 mrad, and a novel strong hadron cooling in the Hadron Storage Ring (HSR) to counteract intra-beam scattering (IBS) at the collision energy. In this talk, we will review the beam dynamics challenges in the design of the EIC, particularly the single-particle dynamic aperture, polarization maintenance, beam-beam interaction, impedance budget and instabilities. We will also briefly mention some technical challenges associated with beam dynamics, such as strong hadron cooling, multipoles and noises of crab cavities, power supply current ripples, and the vacuum upgrade to existing beam pipes of the Hadron Storage Ring of the EIC.
 
slides icon Slides MOA3I1 [3.437 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I1  
About • Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP09 Optimizing Beam Dynamics in LHC with Active Deep Learning framework, network, simulation, dynamic-aperture 422
 
  • D. Di Croce, T. Pieloni, M. Seidel
    EPFL, Lausanne, Switzerland
  • M. Giovannozzi, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • E. Krymova
    SDSC, Lausanne, Switzerland
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  The Dynamic Aperture (DA) is an important concept for the study of non-linear beam dynamics in a circular accelerator. It refers to the region in phase space where a particle’s motion remains bounded over a given number of turns. Understanding the features of DA is crucial for operating circular accelerators as it provides insights on non-linear beam dynamics and the phenomena affecting beam lifetime. The standard approach to calculate the DA is computationally very intensive. In our study, we aim at determining an optimal set of parameters that affect DA, like betatron tune, chromaticity, and Landau octupole strengths, using a Deep Neural Network (DNN) model. The DNN model predicts the so-called angular DA, based on simulated LHC data. To enhance its performance, we integrated the DNN model into an innovative Active Learning (AL) framework. This framework not only enables retraining and updating of the model, but also facilitates efficient data generation through smart sampling. The results demonstrate that the use of the Active Learning (AL) framework allows faster scanning of LHC ring configuration parameters without compromising the accuracy of the DA calculations.  
slides icon Slides THAFP09 [1.028 MB]  
poster icon Poster THAFP09 [6.173 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP09  
About • Received ※ 01 October 2023 — Revised ※ 04 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP18 Revised Collimation Configuration for the Updated FCC-hh Layout collimation, optics, insertion, collider 495
 
  • A. Abramov, R. Bruce, M. Giovannozzi, G. Pérez Segurana, S. Redaelli, T. Risselada
    CERN, Meyrin, Switzerland
 
  The collimation system for the hadron Future Circular Collider (FCC-hh) must handle proton beams with an unprecedented nominal beam energy and stored beam energy in excess of 8 GJ, and protect the superconducting magnets and other sensitive equipment while ensuring a high operational efficiency. The recent development of the 16-dipole lattice baseline for the FCC-hh, and the associated layout changes, has necessitated an adaptation of the collimation system. A revised configuration of the collimation system is presented, considering novel high-beta optics in the betatron collimation insertion. Performance is evaluated through loss map studies, with a focus on losses in critical areas, including collimation insertions and experimental interaction regions.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP18  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP35 Analysis Tools for Numerical Simulations of Dynamic Aperture with Xsuite simulation, collider, dynamic-aperture, framework 551
 
  • T. Pugnat, M. Giovannozzi, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • D. Di Croce
    EPFL, Lausanne, Switzerland
 
  Recently, several efforts have been made at CERN to develop a new tracking tool, Xsuite, which is intended to be the successor to SixTrack. In this framework, analysis tools have also been prepared with the goal of providing advanced post-processing techniques for the interpretation of dynamic aperture simulations. The proposed software suite, named Xdyna, is meant to be a successor to the existing SixDesk environment. It incorporates all recent approaches developed to determine the dynamic aperture for a fixed number of turns. It also enables studying the time evolution of the dynamic aperture and the fitting of rigorous models based on the stability-time estimate provided by the Nekhoroshev theorem. These models make it possible to link the dynamic aperture to beam lifetime, and thus provide very relevant information for the actual performance of particle colliders. These tools have been applied to studies related to the luminosity upgrade of the CERN Large Hadron Collider (HL-LHC), the results of which are presented here.  
poster icon Poster THBP35 [0.514 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP35  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)