JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


BiBTeX citation export for THBP35: Analysis Tools for Numerical Simulations of Dynamic Aperture with Xsuite

@inproceedings{pugnat:hb2023-thbp35,
  author       = {T. Pugnat and D. Di Croce and M. Giovannozzi and F.F. Van der Veken},
  title        = {{Analysis Tools for Numerical Simulations of Dynamic Aperture with Xsuite}},
% booktitle    = {Proc. HB'23},
  booktitle    = {Proc. 68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams (HB'23)},
  eventdate    = {2023-10-09/2023-10-13},
  pages        = {551--554},
  paper        = {THBP35},
  language     = {english},
  keywords     = {simulation, collider, dynamic-aperture, hadron, framework},
  venue        = {Geneva, Switzerland},
  series       = {ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams},
  number       = {68},
  publisher    = {JACoW Publishing, Geneva, Switzerland},
  month        = {04},
  year         = {2024},
  issn         = {2673-5571},
  isbn         = {978-3-95450-253-0},
  doi          = {10.18429/JACoW-HB2023-THBP35},
  url          = {https://jacow.org/hb2023/papers/thbp35.pdf},
  abstract     = {{Recently, several efforts have been made at CERN to develop a new tracking tool, Xsuite, which is intended to be the successor to SixTrack. In this framework, analysis tools have also been prepared with the goal of providing advanced post-processing techniques for the interpretation of dynamic aperture simulations. The proposed software suite, named Xdyna, is meant to be a successor to the existing SixDesk environment. It incorporates all recent approaches developed to determine the dynamic aperture for a fixed number of turns. It also enables studying the time evolution of the dynamic aperture and the fitting of rigorous models based on the stability-time estimate provided by the Nekhoroshev theorem. These models make it possible to link the dynamic aperture to beam lifetime, and thus provide very relevant information for the actual performance of particle colliders. These tools have been applied to studies related to the luminosity upgrade of the CERN Large Hadron Collider (HL-LHC), the results of which are presented here.}},
}