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Abstract
The Dynamic Aperture (DA) is an important concept for

the study of non-linear beam dynamics in a circular accel-
erator. It refers to the region in phase space where a parti-
cle’s motion remains bounded over a given number of turns.
Understanding the features of DA is crucial for operating
circular accelerators, like the CERN Large Hadron Collider,
as it provides insights on non-linear beam dynamics and the
phenomena affecting beam lifetime. The standard approach
to calculate the DA requires accurate numerical simulations
to perform tracking of initial conditions distributed in phase
space over a sufficient number of turns in a circular machine
to understand the beam dynamics. This process is very
computationally intensive. In our study, we aim at deter-
mining the evolution of beam stability for a set of machine
parameters, like betatron tune, chromaticity, and Landau
octupole strengths, i.e., the values that maximise the DA,
using a Deep Neural Network (DNN) model. To enhance its
performance, we integrated the DNN model into an innova-
tive Active Learning (AL) framework. This framework not
only enables the retraining and updating of the DNN model
but also facilitates efficient data generation through smart
sampling.

INTRODUCTION
The study of dynamic aperture (DA), defined as the extent

of the connected phase-space region in which the single-
particle dynamic is bounded, offers valuable insight into
the non-linear beam dynamics of single particles and the
underlying mechanisms contributing to beam losses [1]. The
numerical calculation of the DA involves tracking a large
number of initial conditions in phase space for many turns.
This method is computationally demanding, especially for
large accelerators such as the CERN Large Hadron Collider
(LHC) [2, 3], and for this reason, analytical scaling laws
have been studied for several years [4, 5].

In recent years, we have developed a Machine Learning
(ML) model to quickly and accurately predict DA for un-
known machine configurations [6]. To achieve this, we
trained a Deep Neural Network (DNN) on a substantial
dataset of simulated initial conditions, enabling it to capture
the intricate relationship between the initial conditions and
the resulting DA.
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In this study, we integrate machine learning techniques
into an Active Learning (AL) framework. Additionally, we
introduce an error estimator alongside the DA model to
gauge the uncertainty in the predictions. This enables the AL
algorithm to perform smart sampling, i.e., it can determine
which new machine configuration to simulate first, based
on the size of the predicted DA error. This approach aims
to facilitate the rapid estimation of DA and its associated
error for new machine parameters. At the same time, it
aims to expand the initial dataset, eventually improving the
performance of the ML model in an efficient manner.

SIMULATED SAMPLES
To train the DNN, we simulated several accelerator con-

figurations using MAD-X [7] and the 2023 LHC lattice
at the injection configuration at 450 GeV. We varied six
accelerator parameters, namely the betatron tunes 𝑄𝑥, 𝑄𝑦,
chromaticities 𝑄′

𝑥, 𝑄′
𝑦, strength of the Landau octupoles (us-

ing the current, 𝐼𝑀𝑂, powering them) and the realisations
(also called seeds) of the magnetic field errors assigned to
the various magnet families. Furthermore, both Beam 1 and
Beam 2 have been considered in these studies. We performed
a random uniform grid search of the following parameters:
𝑄𝑥 ∈ [62.1, 62.5] and 𝑄𝑦 ∈ [60.1, 60.5] both with steps of
size 5 × 10−3, 15 𝑄′ values in [0, 30], 17 𝐼MO in [−40, 40],
and 60 random realisations of the magnetic errors for both
Beam 1 and Beam 2. The final dataset is made up of 10459
machine configurations.

The phase space was probed by tracking with XSuite [8, 9]
for 105 turns. To speed up the tracking, we perform an initial
scan of the initial conditions uniformly distributed in 8 polar
angles in [0, 𝜋/2] and 33 radial amplitudes in [0.0, 20𝜎], to
identify the value of the last stable amplitude for that angle
(limit of the stable zone), as well as the first amplitude where
the particle does not survive more than 103 turns (limit of
the fast-loss zone). Then a finer scan of the initial conditions
between the stable zone −2𝜎 and the fast-loss zone +2𝜎 was
performed, along with 44 polar angles in [0, 𝜋/2] and 330
radial amplitudes in [0.0, 20𝜎]. An example of the results
of these computations in the 𝑥 − 𝑦 space is shown in Fig. 1
for a specific accelerator configuration.

The target of the ML regressor is the last stable amplitude
for every angle (angular DA). To prevent extreme angular DA
values from affecting the regressor [10], we cap values above
18 𝜎, as they are outliers in a distribution ranging from 0 𝜎
to 20 𝜎. To gain insight into the evolution of beam stability,
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Figure 1: Stability time for a distribution of intial conditions
used to compute the DA for a specific accelerator configura-
tion. The angular DA at 105 turns is shown in red.

we analysed the angular DA as if we were tracking it for 12
different stability time limits in [103, 105] turns.From the
initials size of 10459 different machine configurations, by
taking into account the variations in angles and turns, the
dataset size has now expanded to 5.5 million samples. From
this number, 10% of the samples were used for validation
and 10% to test the performance of the model.

Moreover, other accelerator parameters, in addition to
those from the machine grid scan, were added to the ML
model: seven anharmonicities up to second order from
PTC [11], the 𝛼 and 𝛽 maximum, and the phase advance
(𝜇𝑥,𝑦) at IP5.

NETWORK ARCHITECTURE AND
TRAINING

Similar to our previous study [6], we use a simple deep
neural network with a concatenation layer to add the informa-
tion of the discrete variables (beam and seeds). The network
was developed using the TensorFlow library [12]. Architec-
ture and hyperparameters were optimised by random search
with the Keras Tuner framework [13]. The best model con-
sists of four hidden layers with 2048, 1024, 512, and 128
nodes, respectively. Dropout (1%) was added between hid-
den layers to improve performance and avoid overfitting. The
loss used for the regressor is the Mean Absolute Error (MAE)
function and trained with the NADAM optimiser [14]. The
initial learning rate is 5 × 10−5 and is halved every 10 se-
quential epochs if the validation loss is not improved. We
found training for 364 epochs to be sufficient for validation
loss convergence.

DA AND ERROR ESTIMATION
The MAE of the angular DA regressor is 0.351(0.351)

beam 𝜎 for the test (train) dataset, and the Mean Absolute Per-

centage Error (MAPE) is 11.91(11.50)% for the test (train)
dataset. These results indicates that the regressor is making
relatively accurate predictions, with errors that are gener-
ally small compared to the range of angular DA values. In

Figure 2: Angular DA predicted as a function of the expected
angular DA values for the test data set.

addition, analysis of the angular DA scatter histogram in
Fig. 2 reveals that the model performs well for most of the
data points, with a tight cluster around the diagonal line,
indicating accurate predictions.

During inference, we can introduce dropout, where some
of the network’s hidden units are randomly set to zero dur-
ing forward propagation. This introduces variability in the
predictions, which can be used to estimate uncertainty. This
technique is called Monte Carlo (MC) dropout. Specifically,
we applied a 1% dropout rate between the first two hidden lay-
ers during inference and conducted 128 inferences for each
angular DA prediction. We then calculated the standard devi-
ation of these predictions to determine uncertainty. Figure 3
illustrates the Percentage Absolute Errors (APE) distribu-
tions for both the true error (the actual angular DA prediction
error) and the error predicted using the MC dropout.

The timing performance to predict the angular DA and
its error of a batch of 1024 samples is 140 s (1.41 ms per
inference) using a Titan V GPU [15], utilising 48 AMD
Ryzen Threadripper 2970WX CPU cores for data loading.
Taking into account a single machine configuration (12
survival turns × 44 angles), this results in an inference of
0.75 s/machine configuration.

ACTIVE LEARNING FRAMEWORK
By integrating the angular DA regressor and the error

estimator, the AL framework is able to make intelligent
sampling decisions based on the magnitude of the associated
error. Specifically, if the error is small, the framework will
utilise the DA predicted by the ML model. Examples of

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-THAFP09

Operations and Commissioning

THAFP09

423

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 3: True (blue) and predicted (orange) APE in function
of the angular DA.

angular DA reconstruction carried out by the AL framework
for four accelerator configurations (available only in the test
data set) with predicted APEs lower than 10% are shown in
Fig. 4.

Figure 4: Simulated and predicted angular DA four configu-
rations of the test data set (predicted APE lower than 10%).

Conversely, if the error is significant, it will opt for running
the full simulation/tracking process to generate new data
allowing the ML model to learn this specific feature. By
prioritising predictions with higher errors, the framework
efficiently determines the sequence in which to simulate
different machine configurations (smart sampling). The
pipeline of the AL framework is shown in Fig. 5.

Furthermore, leveraging the machine configurations esti-
mated with small errors (APE lower than 10 %), we created
a synthetic dataset comprising 1000 machine configurations.
This synthetic dataset was then used to retrain the ML model.
As a result of this update, the model’s MAPE improved to
9.57% (9.61%) for the test (training) dataset.

Figure 5: Pipeline of the AL framework. In yellow the
full simulation/tracking algorithms and in green the ML
algorithms.

Notable is the potential of deep learning to streamline DA
evaluation, speeding up machine parameter optimisation.
Furthermore, the AL framework intelligently incorporates
traditional tracking methods, particularly when significant
prediction errors are detected. In such cases, the framework
initiates full simulations to ensure accuracy.

DISCUSSION
In this study, we achieved significantly better performance

with a Mean Absolute Error (MAE) of 0.351 for the test
dataset, compared to our previous study’s MAE of 0.64 [6].
This improvement can be attributed to the use of a richer set
of input variables, with the current model incorporating 21
machine variables, as opposed to the previous study’s use of
only 7. This boost in performance is thanks to our current
model’s incorporation of 21 machine variables, compared
to the previous study’s meager 7 [6], showcasing how ex-
panding the input features significantly enhanced predictive
accuracy.

The computational efficiency of our approach is a notable
achievement. While the full simulation using MAD-X and
XSuite, combined with the HTCondor system [16], took ap-
proximately 13 days to generate a dataset containing 10459
configurations (equivalent to 107 s/machine configuration).
The AL framework, once trained, is approximately 140 times
faster.

In future investigations, our aim is to create two distinct
datasets: one generated using the AL smart sampler and
another employing grid search. These datasets will serve
as valuable resources for retraining the model and for com-
parative analysis, allowing us to assess the respective perfor-
mance of these sampling methods.

CONCLUSIONS
Our study used machine learning, specifically leveraging

the AL framework with DNN to accurately predict angular
DA and its associated error in circular accelerators. Impor-
tantly, it demonstrated the capability to intelligently sam-
ple new machine configurations, enriching the dataset and
thereby improving its performance. Additionally, it demon-
strated exceptional speed in computation, establishing it as
a powerful tool for optimising beam dynamics.
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