Keyword: electron
Paper Title Other Keywords Page
MOA3I1 Beam Dynamics Challenges in the Design of the Electron-Ion Collider polarization, hadron, proton, emittance 23
 
  • Y. Luo, M. Blaskiewicz, D. Marx, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • A. Blednykh, C. Montag, V. Ptitsyn, V.H. Ranjbar, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • S. Nagaitsev
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC), presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory, will col­lide po­lar­ized high-en­ergy elec­tron beams with hadron beams, achiev­ing lu­mi­nosi­ties up to 1 × 1034 cm¿2 s¿1 in the cen­ter-of-mass en­ergy range of 20-140 GeV. To achieve such high lu­mi­nos­ity, we adopt high bunch in­ten­si­ties for both beams, small and flat trans­verse beam sizes at the in­ter­ac­tion point (IP), a large cross­ing angle of 25 mrad, and a novel strong hadron cool­ing in the Hadron Stor­age Ring (HSR) to coun­ter­act in­tra-beam scat­ter­ing (IBS) at the col­li­sion en­ergy. In this talk, we will re­view the beam dy­nam­ics chal­lenges in the de­sign of the EIC, par­tic­u­larly the sin­gle-par­ti­cle dy­namic aper­ture, po­lar­iza­tion main­te­nance, beam-beam in­ter­ac­tion, im­ped­ance bud­get and in­sta­bil­i­ties. We will also briefly men­tion some tech­ni­cal chal­lenges as­so­ci­ated with beam dy­nam­ics, such as strong hadron cool­ing, mul­ti­poles and noises of crab cav­i­ties, power sup­ply cur­rent rip­ples, and the vac­uum up­grade to ex­ist­ing beam pipes of the Hadron Stor­age Ring of the EIC.
 
slides icon Slides MOA3I1 [3.437 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I1  
About • Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA3C1 The Tracking Code RF-Track and Its Application simulation, linac, positron, space-charge 245
 
  • A. Latina
    CERN, Meyrin, Switzerland
 
  RF-Track is a CERN-de­vel­oped par­ti­cle track­ing code that can sim­u­late the gen­er­a­tion, ac­cel­er­a­tion, and track­ing of beams of any species through an en­tire ac­cel­er­a­tor, both in re­al­is­tic field maps and con­ven­tional el­e­ments. RF-Track in­cludes a large set of sin­gle-par­ti­cle and col­lec­tive ef­fects: space-charge, beam-beam, beam load­ing in stand­ing and trav­el­ling wave struc­tures, short- and long-range wake­field ef­fects, syn­chro­tron ra­di­a­tion emis­sion, mul­ti­ple Coulomb scat­ter­ing in ma­te­ri­als, and par­ti­cle life­time. These ef­fects make it the ideal tool for the sim­u­la­tion of high-in­ten­sity ma­chines. RF-Track has been used for the sim­u­la­tion of elec­tron linacs for med­ical ap­pli­ca­tions, in­verse-Comp­ton-scat­ter­ing sources, positron sources, pro­tons in Linac4, and the cool­ing chan­nel of a fu­ture muon col­lider. An overview of the code is pre­sented, along with some sig­nif­i­cant re­sults.  
slides icon Slides WEA3C1 [2.696 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA3C1  
About • Received ※ 26 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C2 High Energy Cooling proton, undulator, emittance, linac 274
 
  • V.A. Lebedev
    Fermilab, Batavia, Illinois, USA
 
  The paper con­sid­ers meth­ods of par­ti­cle cool­ing ap­plic­a­ble to beam cool­ing in high en­ergy hadron col­lid­ers at the col­li­sion en­ergy. Presently, there are two major meth­ods of the cool­ing the elec­tron cool­ing and sto­chas­tic cool­ing. The later, in ap­pli­ca­tion to col­lid­ers, re­quires ex­cep­tion­ally large fre­quency band of cool­ing sys­tem. Presently two meth­ods are con­sid­ered. They are the op­ti­cal sto­chas­tic cool­ing (OSC) and the co­her­ent elec­tron cool­ing (CEC). OSC and CEC are es­sen­tially ex­ten­sions of mi­crowave sto­chas­tic cool­ing, op­er­at­ing in 1-10 GHz fre­quency range, to the op­ti­cal fre­quen­cies en­abling bands up to 30-300 THz. The OSC uses un­du­la­tors as a pickup and a kicker, and an op­ti­cal am­pli­fier for sig­nal am­pli­fi­ca­tion, while the CEC uses an elec­tron beam for all these func­tions. We dis­cuss major lim­i­ta­tions, ad­van­tages and dis­ad­van­tages of elec­tron and sto­chas­tic cool­ing sys­tems.  
slides icon Slides WEC3C2 [1.054 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C2  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1C1 High Intensity Beam Dynamics Challenges for HL-LHC impedance, cavity, luminosity, octupole 344
 
  • N. Mounet, H. Bartosik, P. Baudrenghien, R. Bruce, X. Buffat, R. Calaga, R. De Maria, C.N. Droin, L. Giacomel, M. Giovannozzi, G. Iadarola, S. Kostoglou, B. Lindström, L. Mether, E. Métral, Y. Papaphilippou, K. Paraschou, S. Redaelli, G. Rumolo, B. Salvant, G. Sterbini, R. Tomás García
    CERN, Meyrin, Switzerland
 
  The High Lu­mi­nos­ity (HL-LHC) pro­ject aims to in­crease the in­te­grated lu­mi­nos­ity of CERN’s Large Hadron Col­lider (LHC) by an order of mag­ni­tude com­pared to its ini­tial de­sign. This re­quires a large in­crease in bunch in­ten­sity and beam bright­ness com­pared to the first LHC runs, and hence poses se­ri­ous col­lec­tive-ef­fects chal­lenges, re­lated in par­tic­u­lar to elec­tron cloud, in­sta­bil­i­ties from beam-cou­pling im­ped­ance, and beam-beam ef­fects. Here we pre­sent the as­so­ci­ated con­straints and the pro­posed mit­i­ga­tion mea­sures to achieve the base­line per­for­mance of the up­graded LHC ma­chine. We also dis­cuss the in­ter­play of these mit­i­ga­tion mea­sures with other as­pects of the ac­cel­er­a­tor, such as the phys­i­cal and dy­namic aper­ture, ma­chine pro­tec­tion, mag­net im­per­fec­tions, op­tics, and the col­li­ma­tion sys­tem.  
slides icon Slides THA1C1 [3.385 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1C1  
About • Received ※ 01 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THC1C1 Transverse Emittance Reconstruction Along the Cycle of the CERN Antiproton Decelerator emittance, operation, antiproton, proton 358
 
  • G. Russo, B. Dupuy, D. Gamba, L. Ponce
    CERN, Meyrin, Switzerland
 
  The pre­cise knowl­edge of the trans­verse beam emit­tances on the dif­fer­ent en­ergy plateaus of the CERN An­tipro­ton De­cel­er­a­tor (AD) ring is im­por­tant for as­sess­ing the ma­chine per­for­mance and beam qual­ity. This paper pre­sents a method­ol­ogy for re­con­struct­ing trans­verse beam pro­files from scraper mea­sure­ments em­ploy­ing the Abel trans­form. The pro­posed method­ol­ogy pro­vides a pre­cise, re­pro­ducible and user in­de­pen­dent way of com­put­ing the beam emit­tance, as well as a use­ful tool to qual­i­ta­tively track ma­chine per­for­mance in rou­tine op­er­a­tion. As dis­cussed in this paper, its ap­pli­ca­tion has al­ready been proven cru­cial for the op­er­a­tional set­ting-up of the sto­chas­tic cool­ing and for de­ter­min­ing the proper func­tion­ing of the elec­tron cool­ing in AD. It also opens up the pos­si­bil­ity for de­tailed bench­mark­ing stud­ies of the cool­ing per­for­mance in dif­fer­ent ma­chine and beam con­di­tions.  
slides icon Slides THC1C1 [2.426 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THC1C1  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP10 Stripline Design of a Fast Faraday Cup for the Bunch Length Measurement at ISOLDE-ISRS ISOL, scattering, impedance, operation 426
 
  • S. Varnasseri, I. Bustinduy, P.J. González, R. Miracoli, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
 
  In order to mea­sure the bunch length of the beam after Multi Har­monic Buncher (MHB) of ISOLDE Su­per­con­duct­ing Re­coil Sep­a­ra­tor (ISRS) and char­ac­ter­ize the lon­gi­tu­di­nal struc­ture of bunches of MHB, in­stal­la­tion of a Fast Fara­day Cup (FFC) is fore­seen. Sev­eral pos­si­ble struc­tures of the fast fara­day cup are stud­ied and due to tim­ing char­ac­ter­is­tics of the beam, a mi­crostrip de­sign is se­lected as the first op­tion. The beam is col­lected on the bi­ased col­lec­tor of the mi­crostrip with a matched im­ped­ance and trans­ferred to the RF wide­band am­pli­fi­ca­tion sys­tem. The am­pli­fied sig­nal then can be an­a­lyzed on the wide­band os­cil­lo­scope or ac­qui­si­tion sys­tem to ex­tract the bunch length and bunch tim­ing struc­ture with pre­ci­sion. The de­sign of the mi­crostrip FFC and pri­mary RF mea­sure­ment of the pro­to­type are dis­cussed in this paper.  
slides icon Slides THAFP10 [2.832 MB]  
poster icon Poster THAFP10 [0.642 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP10  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP11 FPGA-Based Digital IQ Demodulator Used in the Beam Position Monitors for HIAF BRing FPGA, synchrotron, electronics, pick-up 429
 
  • F.F. Ni, Z.X. Li, R.X. Tian, Y. Wei, J.X. Wu
    IMP/CAS, Lanzhou, People’s Republic of China
 
  Funding: NSFC No. E911010301, Y913010GJ0,
A dig­i­tal beam po­si­tion mon­i­tor proces­sor has been de­vel­oped for the High In­ten­sity heavy ion Ac­cel­er­a­tor Fa­cil­ity (HIAF). The dig­i­tal IQ de­mod­u­la­tor is used in the Beam Po­si­tion Mon­i­tor (BPM) sig­nal pro­cess­ing. All data ac­qui­si­tion and dig­i­tal sig­nal pro­cess­ing al­go­rithm rou­tines are per­formed within the FPGA. In the BPM elec­tron­ics sys­tem, a 250 MHz sam­ple rates ADC was used to dig­i­tize the pick-ups sig­nal. In the FPGA, the dig­i­tal sig­nal is fil­tered by ul­tra-nar­row band­pass fil­ters, then the dig­i­tal IQ de­mod­u­la­tor is used to cal­cu­late the beam po­si­tion with dif­fer­ence-over-sum al­go­rithm. The heavy ion syn­chro­tron CSRm rev­o­lu­tion fre­quency is chang­ing from 0.2 MHz to 1.78 MHz when ac­cel­er­ates charged par­ti­cles. In this de­sign, a Di­rect Dig­i­tal Syn­the­sizer (DDS) whose out­put fre­quency changes over time is ap­plied to gen­er­ate the in-phase and quad­ra­ture com­po­nents in the dig­i­tal IQ de­mod­u­la­tor. The per­for­mance of this de­signed BPM proces­sor was eval­u­ated with the on­line HIRFL-CSRm.
 
slides icon Slides THAFP11 [1.332 MB]  
poster icon Poster THAFP11 [4.534 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP11  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP10 A Linearized Vlasov Method for the Study of Transverse e-Cloud Instabilities simulation, quadrupole, dipole, betatron 462
 
  • S. Johannesson, M. Seidel
    EPFL, Lausanne, Switzerland
  • G. Iadarola
    CERN, Meyrin, Switzerland
 
  Using a Vlasov ap­proach, elec­tron cloud dri­ven in­sta­bil­i­ties can be mod­eled to study beam sta­bil­ity on time scales that con­ven­tional Par­ti­cle In Cell sim­u­la­tion meth­ods can­not ac­cess. The Vlasov ap­proach uses a lin­ear de­scrip­tion of elec­tron cloud forces that ac­counts for both the be­ta­tron tune mod­u­la­tion along the bunch and the dipo­lar kicks from the elec­tron cloud. Forces from elec­tron clouds formed in quadru­pole mag­nets as well as di­pole mag­nets have been ex­pressed in this for­mal­ism. In ad­di­tion, the Vlasov ap­proach can take into ac­count the ef­fect of chro­matic­ity. To bench­mark the Vlasov ap­proach, it was com­pared with macropar­ti­cle sim­u­la­tions using the same lin­ear de­scrip­tion of elec­tron cloud forces. The re­sults showed good agree­ment be­tween the Vlasov ap­proach and macropar­ti­cle sim­u­la­tions for strong elec­tron clouds, with both ap­proaches show­ing a sta­bi­liz­ing ef­fect from pos­i­tive chro­matic­ity. This sta­bi­liz­ing ef­fect is con­sis­tent with ob­ser­va­tions from the LHC.  
poster icon Poster THBP10 [4.059 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP10  
About • Received ※ 26 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP16 Emittance Growth From Electron Clouds Forming in the LHC Arc Quadrupoles simulation, emittance, resonance, optics 487
 
  • K. Paraschou, H. Bartosik, L. Deniau, G. Iadarola, E.H. Maclean, L. Mether, Y. Papaphilippou, G. Rumolo, R. Tomás García
    CERN, Meyrin, Switzerland
  • T. Pieloni, J.M.B. Potdevin
    EPFL, Lausanne, Switzerland
 
  Op­er­a­tion of the Large Hadron Col­lider with pro­ton bunches spaced 25 ns apart favours the for­ma­tion of elec­tron clouds. In fact, a slow emit­tance growth is ob­served in pro­ton bunches at in­jec­tion en­ergy (450 GeV), show­ing a bunch-by-bunch sig­na­ture that is com­pat­i­ble with elec­tron cloud ef­fects. The study of these ef­fects is par­tic­u­larly rel­e­vant in view of the planned HL-LHC up­grade, which re­lies on sig­nif­i­cantly in­creased beam in­ten­sity and bright­ness. Par­ti­cle track­ing sim­u­la­tions that take into ac­count both elec­tron cloud ef­fects and the non-lin­ear mag­netic fields of the lat­tice sug­gest that the elec­tron clouds form­ing in the arc quadrupoles are re­spon­si­ble for the ob­served degra­da­tion. In this work, the sim­u­la­tion re­sults are stud­ied to gain in­sight into the mech­a­nism which dri­ves the slow emit­tance growth. Fi­nally, it is dis­cussed how op­ti­mis­ing the op­tics of the lat­tice can allow the mit­i­ga­tion of such ef­fects.  
poster icon Poster THBP16 [3.432 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP16  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP31 Electron Cloud Effects in the CERN Accelerators in Run 3 operation, injection, kicker, simulation 538
 
  • L. Mether, H. Bartosik, L. Giacomel, G. Iadarola, S. Johannesson, I. Mases Solé, K. Paraschou, G. Rumolo, L. Sabato, C. Zannini, E. de la Fuente
    CERN, Meyrin, Switzerland
  • S. Johannesson
    EPFL, Lausanne, Switzerland
 
  Sev­eral of the ma­chines in the CERN ac­cel­er­a­tor com­plex, in par­tic­u­lar the Large Hadron Col­lider (LHC) and the Super Pro­ton Syn­chro­tron (SPS), are prone to the build-up of elec­tron clouds. Elec­tron cloud ef­fects are ob­served es­pe­cially when the ma­chines are op­er­ated with a 25 ns bunch spac­ing, which has rou­tinely been used in the LHC since the start of its sec­ond op­er­a­tional run in 2015. After the com­ple­tion of the LHC In­jec­tors Up­grade pro­gram dur­ing the lat­est long shut­down pe­riod, the ma­chines are cur­rently op­er­ated with un­prece­dented bunch in­ten­sity and beam bright­ness. With the in­crease in bunch in­ten­sity, elec­tron cloud ef­fects have be­come one of the main per­for­mance lim­i­ta­tions, as pre­dicted by sim­u­la­tion stud­ies. In this con­tri­bu­tion we pre­sent the ex­per­i­men­tal ob­ser­va­tions of elec­tron cloud ef­fects since 2021 and dis­cuss their im­pli­ca­tions for the fu­ture op­er­a­tion of the com­plex.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP31  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP50 Fermilab Main Injector and Recycler Operations in the Megawatt Era operation, proton, booster, experiment 607
 
  • A.P. Schreckenberger
    Fermilab, Batavia, Illinois, USA
 
  Sig­nif­i­cant up­grades to Fer­mi­lab¿s ac­cel­er­a­tor com­plex have ac­com­pa­nied the de­vel­op­ment of LBNF and DUNE. These im­prove­ments will fa­cil­i­tate 1-MW op­er­a­tion of the NuMI beam for the first time this year through changes to the Re­cy­cler slip-stack­ing pro­ce­dure and short­en­ing of the Main In­jec­tor ramp time. The mod­i­fi­ca­tions to the Re­cy­cler slip-stack­ing and ef­fort to re­duce the Main In­jec­tor ramp time will be dis­cussed. Ad­di­tion­ally, de­tails re­gard­ing fur­ther short­en­ing of the ramp time and the im­pact on fu­ture ac­cel­er­a­tor op­er­a­tions are pre­sented.  
poster icon Poster THBP50 [0.923 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP50  
About • Received ※ 25 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP55 Commissioning of NICA Injection Complex booster, injection, acceleration, operation 618
 
  • V.A. Lebedev, O.I. Brovko, A.V. Butenko, E.E. Donets, B.V. Golovenskiy, E.V. Gorbachev, S.A. Kostromin, K.A. Levterov, I.N. Meshkov, A.S. Sergeev, M.M. Shandov, A.O. Sidorin, V.L. Smirnov, E. Syresin, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • I. Nikolaichuk, A.Yu. Ramsdorf
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The Nu­clotron-based Ion Col­lider fA­cil­ity (NICA) is under con­struc­tion at JINR. The NICA pro­ject goal is to pro­vide col­lid­ing beams for stud­ies of col­li­sions of heavy fully stripped ions and light p¿la­i­rized ions. The NICA Col­lider in­cludes two rings with 503 m cir­cum­fer­ence each and the in­jec­tion com­plex. For the heavy ion mode, the in­jec­tion com­plex con­sists of fol­low­ing ac­cel­er­a­tors: 3.2 MeV/u linac (HILAC), 600 MeV/u (A/Z=6) su­per­con­duct­ing booster syn­chro­tron (Booster) and main su­per­con­duct­ing syn­chro­tron (Nu­clotron) with ki­netic en­ergy up to 3.9 GeV/u (A/Z=2.5). The in­jec­tion com­plex has been under com­mis­sion­ing for more than 2 years. Its Run IV was car­ried from Oc­to­ber 2022 to Feb­ru­ary of 2023. It was aimed on the in­jec­tion com­plex prepa­ra­tion for the col­lider op­er­a­tions in the heavy ion mode. Ad­di­tion­ally, the slowly ex­tracted 3.9 GeV/u xenon beam was de­liv­ered to the BM&N ex­per­i­ment re­sult­ing in 250 mil­lion events in the de­tec­tor. The paper dis­cusses main re­sults of the in­jec­tion com­plex com­mis­sion­ing and plans for its fur­ther de­vel­op­ment. The beam com­mis­sion­ing of the col­lider is ex­pected in the 2nd half of 2025.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP55  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1I1 Status of the IOTA Proton Injector proton, rfq, MEBT, LEBT 629
 
  • D.R. Edstrom, D.R. Broemmelsiek, K. Carlson, J.-P. Carneiro, H. Piekarz, A.L. Romanov, A.V. Shemyakin, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The IOTA Pro­ton In­jec­tor (IPI), cur­rently under in­stal­la­tion at the Fer­mi­lab Ac­cel­er­a­tor Sci­ence and Tech­nol­ogy fa­cil­ity, is a beam­line ca­pa­ble of de­liv­er­ing 20-mA pulses of pro­tons at 2.5 MeV to the In­te­grable Op­tics Test Ac­cel­er­a­tor (IOTA) ring. First beam in the IPI beam­line is an­tic­i­pated in 2023, when it will op­er­ate along­side the ex­ist­ing elec­tron in­jec­tor beam­line to fa­cil­i­tate fur­ther fun­da­men­tal physics re­search and con­tin­ued de­vel­op­ment of novel ac­cel­er­a­tor tech­nolo­gies in the IOTA ring. This re­port de­tails the ex­pected op­er­a­tional pro­file, known chal­lenges, and the cur­rent state of in­stal­la­tion.
 
slides icon Slides FRA1I1 [6.466 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA1I1  
About • Received ※ 08 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)