Keyword: injection
Paper Title Other Keywords Page
MOA1I1 Beam Performance with the LHC Injectors Upgrade brightness, operation, emittance, target 1
 
  • G. Rumolo, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, C. Antuono, T. Argyropoulos, F. Asvesta, M.J. Barnes, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, C. Bracco, N. Bruchon, E. Carlier, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, R. Garoby, S.S. Gilardoni, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, G. Iadarola, V. Kain, I. Karpov, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, E.H. Maclean, D. Manglunki, I. Mases Solé, M. Meddahi, L. Mether, B. Mikulec, E. Montesinos, Y. Papaphilippou, G. Papotti, K. Paraschou, C. Pasquino, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, F. Roncarolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, L. Sito, P.K. Skowroński, A. Spierer, R. Steerenberg, M. Sullivan, F.M. Velotti, R. Veness, C. Vollinger, R. Wegner, C. Zannini, E. de la Fuente
    CERN, Meyrin, Switzerland
  • T. Prebibaj
    IAP, Frankfurt am Main, Germany
 
  The LHC In­jec­tors Up­grade (LIU) pro­ject was put in place be­tween 2010 and 2021 to in­crease the in­ten­sity and bright­ness in the LHC in­jec­tors to match the chal­leng­ing re­quire­ments of the High-Lu­mi­nos­ity LHC (HL-LHC) pro­ject, while en­sur­ing re­li­able op­er­a­tion of the in­jec­tors com­plex up to the end of the HL-LHC era (ca. 2040). Dur­ing the 2019-2020 CERN ac­cel­er­a­tors shut­down, ex­ten­sive hard­ware mod­i­fi­ca­tions were im­ple­mented in the en­tire LHC pro­ton and ion in­jec­tion chains, in­volv­ing the new Linac4, the Pro­ton Syn­chro­tron Booster (PSB), the Pro­ton Syn­chro­tron (PS), the Super Pro­ton Syn­chro­tron (SPS) and the ion PS in­jec­tors, i.e. the Linac3 and the Low En­ergy Ion Ring (LEIR). Since 2021, beams have been recom­mis­sioned through­out the in­jec­tors’ chain and the beam pa­ra­me­ters are being grad­u­ally ramped up to meet the LIU spec­i­fi­ca­tions using new beam dy­nam­ics so­lu­tions adapted to the up­graded ac­cel­er­a­tors. This paper fo­cuses on the pro­ton beams and de­scribes the cur­rent state of the art.  
slides icon Slides MOA1I1 [10.002 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA1I1  
About • Received ※ 29 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA1I3 Intense Beam Issues in CSNS Accelerator Beam Commissioning space-charge, MMI, sextupole, cavity 16
 
  • L. Huang, H.Y. Liu, X.H. Lu, X.B. Luo, J. Peng, L. Rao
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y.W. An, J. Chen, M.Y. Huang, Y. Li, Z.P. Li, S. Wang
    IHEP, Beijing, People’s Republic of China
  • S.Y. Xu
    DNSC, Dongguan, People’s Republic of China
 
  The China Spal­la­tion Neu­tron Source (CSNS) con­sists of an 80 MeV H⁻ Linac, a 1.6 GeV Rapid Cy­cling Syn­chro­tron (RCS), beam trans­port lines, a tar­get sta­tion, and three spec­trom­e­ters. The CSNS de­sign beam power is 100 kW, with the ca­pa­bil­ity to up­grade to 500 kW. In Au­gust 2018, CSNS was of­fi­cially opened to do­mes­tic and in­ter­na­tional users. By Feb­ru­ary 2020, the beam power had reached 100 kW, and through im­prove­ments such as adding har­monic cav­i­ties, the beam power was in­creased to 140 kW. Dur­ing the beam com­mis­sion­ing process, the beam loss caused by space charge ef­fects was the most sig­nif­i­cant fac­tor lim­it­ing the in­crease in beam power. Ad­di­tion­ally, un­ex­pected col­lec­tive ef­fects were ob­served, in­clud­ing co­her­ent os­cil­la­tions of the bunches, after the beam power reached 50 kW. Through a se­ries of mea­sures, the space charge ef­fects and col­lec­tive in­sta­bil­i­ties caus­ing beam loss were ef­fec­tively con­trolled. This paper mainly in­tro­duces the strong beam ef­fects dis­cov­ered dur­ing the beam com­mis­sion­ing at CSNS and their sup­pres­sion meth­ods. It also briefly dis­cusses the re­search on beam space charge ef­fects and col­lec­tive ef­fects in the beam dy­nam­ics de­sign of CSNS-II pro­ject.  
slides icon Slides MOA1I3 [8.597 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA1I3  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOA4I1 Design of a Fixed-Field Accelerating Ring for High Power Applications extraction, synchrotron, resonance, lattice 38
 
  • S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  A fixed field ac­cel­er­at­ing ring (FFA) has some ad­van­tage to achieve high beam power over con­ven­tional ring ac­cel­er­a­tors. It would be also a sus­tain­able op­tion as fu­ture pro­ton dri­vers. We will dis­cuss the de­sign of an FFA tak­ing a fu­ture up­grade plan of ISIS (ISIS-II) as an ex­am­ple.  
slides icon Slides MOA4I1 [14.313 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA4I1  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 15 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I2 Shaping High Brightness and Fixed Target Beams with the CERN PSB Charge Exchange Injection operation, emittance, target, brightness 135
 
  • C. Bracco, S.C.P. Albright, F. Asvesta, G.P. Di Giovanni, F. Roncarolo
    CERN, Meyrin, Switzerland
 
  CERN adopted the charge ex­change in­jec­tion tech­nique for the first time in the PS Booster after Long Shut­down 2. This al­lowed to over­come space charge lim­i­ta­tions, tai­lor high bright­ness beams for the LHC and de­liver high in­ten­sity flux of pro­tons to the fixed tar­get ex­per­i­ments. De­tails on the con­cept, physics, hard­ware and di­ag­nos­tic tools are pre­sented while re­trac­ing the ex­cit­ing steps of the suc­cess­ful com­mis­sion­ing pe­riod and the first years of op­er­a­tion with this sys­tem. A look to the fu­ture is taken by ex­plain­ing the next stages to achieve the am­bi­tious Lu­mi­nos­ity tar­gets fore­seen for the HL-LHC era.  
slides icon Slides TUC3I2 [19.053 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I2  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I3 Laser Stripping of H⁻ Beam laser, experiment, proton, resonance 141
 
  • T.V. Gorlov, A.V. Aleksandrov, S.M. Cousineau, Y. Liu, A.R. Oguz
    ORNL, Oak Ridge, Tennessee, USA
  • N.J. Evans
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P.K. Saha
    JAEA/J-PARC, Tokai-mura, Japan
 
  Basic prin­ci­ples of laser as­sisted charge ex­change in­jec­tion for H⁻ ion andH0 beams are pre­sented. The­o­ret­i­cal as­pects of elec­tro­mag­netic in­ter­ac­tion of laser with hy­dro­gen atom and H⁻ ions are dis­cussed. Laser ex­ci­ta­tion, pho­toion­iza­tio and in­ter­ac­tion of atoms and ions with a strong elec­tro-mag­netic field are dis­cussed and com­pared. Dif­fer­ent tech­niques of LACE for strip­ping of high cur­rent sto­chas­tic beams are pre­sented. The op­ti­mum pa­ra­me­ters of LACE are es­ti­mated and com­pared for var­i­ous ion beam en­er­gies. Ex­per­i­men­tal de­vel­op­ment of laser strip­ping at the SNS are re­viewed. Fu­ture plans of LACE at the SNS and J-PARC are dis­cussed.  
slides icon Slides TUC3I3 [1.790 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I3  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 01 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA4I2 1-MW Beam Operation at J-PARC RCS with Minimum Beam Loss operation, simulation, beam-losses, scattering 147
 
  • P.K. Saha, H. Harada, H. Hotchi, K. Okabe, H. Okita, Y. Shobuda, F. Tamura, K. Yamamoto, M. Yoshimoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The 3-GeV RCS of J-PARC now op­er­ates at high-in­ten­sity to nearly the de­signed 1 MW beam. The beam loss and the cor­re­spond­ing resid­ual ra­di­a­tion is one of the key lim­i­ta­tions against beam in­ten­sity ramp up. Re­cently, by a se­ries of beam stud­ies and feed­back from nu­mer­i­cal sim­u­la­tions, we have well mit­i­gated the beam loss to a min­i­mum level and also re­duced the beam emit­tances for beam op­er­a­tion to the spal­la­tion neu­tron source as well as to the main ring. The resid­ual beam loss at the de­signed 1 MW beam power oc­curs mostly due to the un­avoid­able foil scat­ter­ing beam loss dur­ing multi-turn in­jec­tion, while other beam loss sources have been well mit­i­gated to re­al­ize a sta­ble and higher avail­abil­ity beam op­er­a­tion at a nearly 1 MW beam power.  
slides icon Slides TUA4I2 [2.303 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA4I2  
About • Received ※ 02 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA4C2 Application of Programmable Trim Quadrupoles in Beam Commissioning of CSNS/RCS quadrupole, neutron, MMI, lattice 158
 
  • Y. Li, C.D. Deng, S.Y. Xu
    DNSC, Dongguan, People’s Republic of China
  • Y.W. An, X. Qi, S. Wang, Y.S. Yuan
    IHEP, Beijing, People’s Republic of China
  • H.Y. Liu
    IHEP CSNS, Guangdong Province, People’s Republic of China
 
  The China Spal­la­tion Neu­tron Source (CSNS) achieved its de­sign power of 100 kW in 2020 and is cur­rently sta­bly op­er­at­ing at 140 kW after a se­ries of mea­sures. In the process of in­creas­ing beam power, 16 pro­gram­ma­ble trim quadrupoles were in­stalled in the Rapid Cy­cling Syn­chro­tron (RCS) of CSNS to en­able rapid vari­a­tion of tunes, ef­fec­tive ad­just­ment of Twiss pa­ra­me­ters, and restora­tion of lat­tice su­per­pe­ri­od­ic­ity through the ma­chine cycle. This paper pro­vides a de­tailed in­tro­duc­tion to the de­sign of the trim quadrupoles and pre­lim­i­nary re­sults of the ma­chine study. The beam ex­per­i­ments show that the trim quadrupoles play a cru­cial role in in­creas­ing beam power after ex­ceed­ing 100 kW.  
slides icon Slides TUA4C2 [4.136 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA4C2  
About • Received ※ 27 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA1C1 Bunch-by-bunch Tune Shift Studies for LHC-type Beams in the CERN SPS simulation, impedance, wakefield, operation 194
 
  • I. Mases Solé, H. Bartosik, K. Paraschou, M. Schenk, C. Zannini
    CERN, Meyrin, Switzerland
 
  After the im­ple­men­ta­tion of major up­grades as part of the LHC In­jec­tor Up­grade Pro­ject (LIU), the Super Pro­ton Syn­chro­tron (SPS) de­liv­ers high in­ten­sity bunch trains with 25 ns bunch spac­ing to the Large Hadron Col­lider (LHC). These beams are ex­posed to sev­eral col­lec­tive ef­fects in the SPS, such as beam cou­pling im­ped­ance, space charge and elec­tron cloud, lead­ing to rel­a­tively large bunch-by-bunch co­her­ent and in­co­her­ent tune shifts. Tune cor­rec­tion to the nom­i­nal val­ues at in­jec­tion is cru­cial to en­sure beam sta­bil­ity and good beam trans­mis­sion. Mea­sure­ments of the bunch-by-bunch co­her­ent tune shifts have been per­formed under dif­fer­ent beam con­di­tions. In this paper, we pre­sent the mea­sure­ments of the bunch-by-bunch tune shift as func­tion of bunch in­ten­sity for trains of 72 bunches. The ex­per­i­men­tal data are com­pared to mul­ti­par­ti­cle track­ing sim­u­la­tions (in­clud­ing other beam vari­ants such as 8b4e beam and hy­brid beams) using the SPS im­ped­ance model.  
slides icon Slides WEA1C1 [2.613 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA1C1  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 09 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3I1 Self-Consistent Injection Painting for Space Charge Mitigation space-charge, emittance, solenoid, experiment 258
 
  • N.J. Evans, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • T.V. Gorlov, A.M. Hoover
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This work was conducted at UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy, with partial funding provided by Field Work Proposal ORNL-ERKCS41.
I will pre­sent re­sults of ex­per­i­ments at the Spal­la­tion Neu­tron Source to im­ple­ment a method of phase space paint­ing we refer to as ¿eigen­paint­ing¿, in which beam is in­jected along one eigen­vec­tor of the trans­fer ma­trix of a ring with full cou­pling.  The method and re­sul­tant dis­tri­b­u­tion were ini­tially pro­posed by Danilov al­most to lin­earize the space charge force, min­i­miz­ing space charge tune spread. In the the­o­ret­i­cally ideal case this so-called Danilov dis­tri­b­u­tion has uni­form charge dis­tri­b­u­tion, el­lip­ti­cal en­ve­lope in real-space, and a van­ish­ing 4D trans­verse emit­tance. Such a beam can be main­tained through­out in­jec­tion. The Danilov dis­tri­b­u­tion has im­pli­ca­tions for in­creas­ing beam in­ten­sity be­yond the con­ven­tional space charge limit through a re­duc­tion of both tune spread and shift, and in­creas­ing col­lider per­for­mance. This talk will pre­sent cur­rent lim­its on beam qual­ity, and de­tails of the prepa­ra­tion of the op­tics in the SNS ac­cu­mu­la­tor ring, in­clud­ing the in­stal­la­tion of new so­le­noid mag­nets. The sta­tus of ex­per­i­ments to im­prove beam qual­ity and char­ac­ter­ize the in­ter­est­ing dy­nam­i­cal im­pli­ca­tions of the defin­ing fea­tures of the Danilov dis­tri­b­u­tion will also be dis­cussed.
 
slides icon Slides WEC3I1 [2.687 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3I1  
About • Received ※ 28 September 2023 — Revised ※ 10 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3I2 Mitigation of Space Charge Effects in RHIC and Its Injectors booster, space-charge, emittance, polarization 264
 
  • V. Schoefer, C.J. Gardner, K. Hock, H. Huang, K. Zeno
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy
The RHIC col­lider physics pro­gram, in par­tic­u­lar its po­lar­ized pro­ton and low en­ergy heavy ion com­po­nents, pre­sent unique chal­lenges for main­tain­ing col­lider per­for­mance in the pres­ence of space charge ef­fects. Po­lar­ized beam per­for­mance is es­pe­cially sen­si­tive to emit­tance in­creases, since they de­crease both the lu­mi­nos­ity and po­lar­iza­tion. Op­er­a­tion of the col­lider with gold beams at sub-in­jec­tion en­er­gies (down to 3.85 GeV/n Au) with space charge tune shifts up to 0.1 re­quired spe­cial care to op­ti­mize both the ion life­time and its in­ter­ac­tion with the elec­tron-beam cooler. We de­scribe the op­er­a­tional ex­pe­ri­ence in these modes and some of the mit­i­ga­tion ef­forts.
 
slides icon Slides WEC3I2 [10.503 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3I2  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C1 Beyond 1-MW Scenario in J-Parc Rapid-Cycling Synchrotron cavity, acceleration, operation, linac 270
 
  • K. Yamamoto, T. Morishita, K. Moriya, H. Okita, P.K. Saha, Y. Shobuda, F. Tamura, I. Yamada, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  The 3-GeV rapid cy­cling syn­chro­tron at the Ja-pan Pro-ton Ac­cel­er­a­tor Re­search Com­plex was de­signed to provid 1-MW pro­ton beams to the Ma­te­r­ial and Life Sci-ence Ex­per­i­men­tal Fa­cil­ity and Main Ring. Thanks to the im­prove­ment works of the ac­cel­er­a­tor sys­tem, we suc­cess-fully ac­cel­er­ate 1-MW beam with quite small beam loss. Cur­rently, the beam power of RCS is lim­ited by the lack of anode cur­rent in the RF cav­ity sys­tem rather than the beam loss. Re­cently we de­vel­oped a new ac­cel­er­a­tion cav­ity that can ac­cel­er­ate a beam with less anode cur­rent. This new cav­ity en­ables us not only to re­duce re­quire-ment of the anode power sup­ply but also to ac­cel­er­ate more than 1-MW beam. We have started to con­sider the way to achieve be­yond 1-MW beam ac­cel­er­a­tion. So far, it is ex­pected that up to 1.5-MW beam can be ac­cel­er­ated after re­place­ment of the RF cav­ity. We have also con­tin-ued study to achieve more than 2 MW beam in J-PARC RCS.  
slides icon Slides WEC3C1 [2.787 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C1  
About • Received ※ 25 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 26 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC3C3 Simulations and Measurements of Betatron and Off-momentum Cleaning Performance in the Energy Ramp at the LHC simulation, collimation, betatron, optics 279
 
  • N. Triantafyllou, R. Bruce, M. D’Andrea, K.A. Dewhurst, B. Lindström, D. Mirarchi, S. Redaelli, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  The Large Hadron Col­lider (LHC) is equipped with a mul­ti­stage col­li­ma­tion sys­tem that pro­tects the ma­chine against un­avoid­able beam losses at large be­ta­tron and en­ergy off­sets at all stages of op­er­a­tion. Ded­i­cated val­i­da­tions and an un­der­stand­ing in sim­u­la­tions of the col­li­ma­tion per­for­mance are cru­cial for the en­ergy ramp from 450 GeV to 6.8 TeV be­cause com­plex changes of op­tics and orbit take place in this phase. In­deed, the be­ta­tron func­tions are re­duced in all ex­per­i­ments for an ef­fi­cient setup of the col­li­sions at top en­ergy. In this paper, sim­u­la­tions of the be­ta­tron and off-mo­men­tum clean­ing dur­ing the en­ergy ramp are pre­sented. A par­tic­u­lar focus is given to the off-mo­men­tum losses at the start of the ramp. The sim­u­la­tion re­sults are bench­marked against ex­per­i­men­tal data, demon­strat­ing the ac­cu­racy of the newly de­vel­oped tools used for the sim­u­la­tions.  
slides icon Slides WEC3C3 [1.641 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C3  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1I1 Performance and Upgrade Considerations for the CSNS Injection MMI, neutron, proton, simulation 326
 
  • M.Y. Huang, S. Wang, S.Y. Xu
    IHEP, Beijing, People’s Republic of China
 
  Funding: This work is jointly supported by the National Natural Science Foundation of China (Nos. 12075134) and the Guangdong Basic and Applied Basic Research Foundation (No. 2021B1515120021).
For the pro­ton syn­chro­tron, the beam in­jec­tion is one of the most im­por­tant is­sues. Firstly, based on the China Spal­la­tion Neu­tron Source (CSNS), the in­jec­tion meth­ods have been com­pre­hen­sively stud­ied, in­clud­ing phase space paint­ing and H⁻ strip­ping. In order to solve the key dif­fi­cul­ties faced when the beam power ex­ceeds 50% of the de­sign value, flex­i­bil­ity in the CSNS de­sign has been ex­ploited to im­ple­ment the cor­re­lated paint­ing by using the ris­ing cur­rent curve of the pulse power sup­ply. The ef­fec­tive­ness of the new method has been ver­i­fied in the sim­u­la­tion and beam com­mis­sion­ing. By using the new method, the beam power on the tar­get has suc­cess­fully risen to the de­sign value. Sec­ondly, for the CSNS up­grade, the in­jec­tion en­ergy is in­creased from 80 MeV to 300 MeV and the in­jec­tion beam power is in­creased by about 19 times. Based on the CSNS ex­pe­ri­ence and sim­u­la­tion re­sults, it is hoped that the new in­jec­tion scheme can not only be com­pat­i­ble with cor­re­lated and anti-cor­re­lated paint­ing, but also greatly re­duces the peak tem­per­a­ture of the strip­ping foil. After in-depth study, a new paint­ing scheme has been pro­posed which has been ver­i­fied to be fea­si­ble in the sim­u­la­tion.
 
slides icon Slides THA1I1 [2.951 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1I1  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP08 Performance of the Ion Chain at the CERN Injector Complex and Transmission Studies During the 2023 Slip Stacking Commissioning emittance, linac, MMI, extraction 418
 
  • M. Slupecki, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, T. Argyropoulos, H. Bartosik, P. Baudrenghien, G. Bellodi, M. Bozzolan, R. Bruce, C. Carli, J. Cenede, H. Damerau, A. Frassier, D. Gamba, G. Hagmann, A. Huschauer, V. Kain, G. Khatri, D. Küchler, A. Lasheen, K.S.B. Li, E. Mahner, G. Papotti, G. Piccinini, A. Rey, M. Schenk, R. Scrivens, A. Spierer, G. Tranquille, D. Valuch, F.M. Velotti, R. Wegner
    CERN, Meyrin, Switzerland
  • E. Waagaard
    EPFL, Lausanne, Switzerland
 
  The 2023 run has been de­ci­sive for the LHC Ion In­jec­tor Com­plex. It demon­strated the ca­pa­bil­ity of pro­duc­ing full trains of mo­men­tum slip stacked lead ions in the SPS. Slip stack­ing is a tech­nique of in­ter­leav­ing par­ti­cle trains, re­duc­ing the bunch spac­ing in SPS from 100 ns to 50 ns. It is needed to reach the total ion in­ten­sity re­quested by the HL-LHC pro­ject, as de­fined by up­dated com­mon LIU/HL-LHC tar­get beam pa­ra­me­ters. This paper re­views the lead beam char­ac­ter­is­tics across the Ion In­jec­tor Com­plex, in­clud­ing trans­mis­sion ef­fi­cien­cies up to the SPS ex­trac­tion. It also doc­u­ments the dif­fi­cul­ties found dur­ing the com­mis­sion­ing and the so­lu­tions put in place.  
slides icon Slides THAFP08 [1.114 MB]  
poster icon Poster THAFP08 [1.995 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP08  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP09 Pushing High Intensity and High Brightness Limits in the CERN PSB after the LIU Upgrades resonance, brightness, space-charge, emittance 458
 
  • F. Asvesta, S.C.P. Albright, H. Bartosik, C. Bracco, G.P. Di Giovanni, T. Prebibaj
    CERN, Meyrin, Switzerland
 
  After the suc­cess­ful com­ple­tion of the LHC In­jec­tors Up­grade (LIU) pro­ject, the CERN Pro­ton Syn­chro­tron Booster (PSB) has pro­duced beams with up to two times higher bright­ness. How­ever, the ef­forts to con­tin­u­ously im­prove the beam qual­ity for the CERN physics ex­per­i­ments are on­go­ing. In par­tic­u­lar, the high bright­ness LHC beams show non-Gauss­ian tails in the trans­verse pro­files that can cause losses in the down­stream ma­chines, and even at LHC in­jec­tion. As a re­sult, al­ter­na­tive pro­duc­tion schemes based on triple har­monic cap­ture are being in­ves­ti­gated in order to pre­serve bright­ness and re­duce trans­verse tails at the same time. In ad­di­tion, in view of a pos­si­ble up­grade to the ISOLDE fa­cil­ity that would re­quire ap­prox­i­mately twice the num­ber of pro­tons per ring, the ul­ti­mate in­ten­sity reach of the PSB is ex­plored. In this con­text, in­jec­tion schemes using paint­ing both trans­versely and lon­gi­tu­di­nally in order to mit­i­gate the strong space charge ef­fects are de­vel­oped.  
poster icon Poster THBP09 [0.751 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP09  
About • Received ※ 28 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 20 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP14 LHC Optics Measurements from Transverse Damper for the High Intensity Frontier dipole, optics, operation, resonance 479
 
  • T. Nissinen, F.S. Carlier, M. Le Garrec, E.H. Maclean, T.H.B. Persson, R. Tomás García, A. Wegscheider
    CERN, Meyrin, Switzerland
 
  Cur­rent and fu­ture ac­cel­er­a­tor pro­jects are push­ing the bright­ness and in­ten­sity fron­tier, cre­at­ing new chal­lenges for turn-by-turn based op­tics mea­sure­ments. Trans­verse os­cil­la­tions are lim­ited in am­pli­tude due to par­ti­cle losses. The LHC Trans­verse Damper (ADT) is ca­pa­ble of gen­er­at­ing low am­pli­tude ac-di­pole like trans­verse co­her­ent beam os­cil­la­tions. While the am­pli­tude of such ex­ci­ta­tions is low, it is com­pen­sated by the ex­ci­ta­tion length of the ADT which, in the­ory, can last for up to 48h. Using the ADT, it is pos­si­ble to use the max­i­mum BPM ac­qui­si­tion length and im­prove the spec­tral res­o­lu­tion. First op­tics mea­sure­ments have been per­formed using the ADT in the LHC in 2023, and the re­sults are pre­sented in this paper. Fur­ther­more, some ob­served lim­i­ta­tions of this method are pre­sented and their im­pact on ADT stud­ies are dis­cussed.  
poster icon Poster THBP14 [2.632 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP14  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP15 Optimizing Resonance Driving Terms Using MAD-NG Parametric Maps optics, resonance, octupole, emittance 483
 
  • L. Deniau, S. Kostoglou, E.H. Maclean, K. Paraschou, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
 
  In 2023, a re­view of the LHC oc­tupo­lar res­o­nance dri­ving terms at in­jec­tion was car­ried out, mo­ti­vated by two ob­ser­va­tions: (i) un­wanted losses dur­ing the in­jec­tion process with strongly pow­ered oc­tupoles and (ii) an ex­pected re­duc­tion in emit­tance growth from e-cloud ef­fects in sim­u­la­tions with weaker oc­tupo­lar res­o­nances. The MAD-NG code was used to si­mul­ta­ne­ously op­ti­mise the main oc­tupo­lar res­o­nances: 4Qx, 4Qy, and 2Qx-2Qy by ad­just­ing 16 quadru­pole fam­i­lies and 16 oc­tu­pole fam­i­lies, for a total of 32 pa­ra­me­ters. These knobs were in­tro­duced as pa­ra­me­ters in the trans­fer map, al­low­ing the Ja­co­bian re­quired by the op­ti­miser to be cal­cu­lated in a sin­gle pass, sav­ing 32 ad­di­tional op­tics eval­u­a­tions and avoid­ing fi­nite dif­fer­ence ap­prox­i­ma­tions. Con­straints on tunes, am­pli­tude de­tun­ing and op­tics around the ma­chine were also con­sid­ered as part of the op­ti­mi­sa­tion process. This paper re­views the para­met­ric op­ti­mi­sa­tion with MAD-NG and com­pares the re­sults with MADX-PTC.  
poster icon Poster THBP15 [0.938 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP15  
About • Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP20 Optics for Landau Damping with Minimized Octupolar Resonances in the LHC optics, resonance, octupole, focusing 503
 
  • R. Tomás García, F.S. Carlier, L. Deniau, J. Dilly, J. Keintzel, S. Kostoglou, M. Le Garrec, E.H. Maclean, K. Paraschou, T.H.B. Persson, F. Soubelet, A. Wegscheider
    CERN, Meyrin, Switzerland
 
  Op­er­a­tion of the Large Hadron Col­lider (LHC) re­quires strong oc­tupo­lar mag­netic fields to sup­press co­her­ent beam in­sta­bil­i­ties. The am­pli­tude de­tun­ing that is gen­er­ated by these oc­tupo­lar mag­netic fields brings the tune of in­di­vid­ual par­ti­cles close to harm­ful res­o­nances, which are mostly dri­ven by the oc­tupo­lar fields them­selves. In 2023, new op­tics were de­ployed in the LHC at in­jec­tion with op­ti­mized be­ta­tronic phase ad­vances to min­i­mize the res­o­nances from the oc­tupo­lar fields with­out af­fect­ing the am­pli­tude de­tun­ing. This paper re­ports on the op­tics de­sign, com­mis­sion­ing and the life­time mea­sure­ments per­formed to val­i­date the op­tics.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP20  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP22 On Liouvillian High Power Beam Accumulation emittance, closed-orbit, accumulation, linac 511
 
  • J.-M. Lagniel
    GANIL, Caen, France
  • M.E. Eshraqi, N. Milas
    ESS, Lund, Sweden
 
  Funding: This work is co-funded by the European Union
It is ac­knowl­edged that the in­jec­tion of high power pro­ton beams into syn­chro­trons must be done using strip­ping in­jec­tion of H⁻ beams which are ac­cel­er­ated by an in­jec­tor, as done in many fa­cil­i­ties world­wide such as ISIS, JPARC, SNS and CERN. How­ever, this tech­nique is not nec­es­sar­ily the only way of ac­cu­mu­la­tion and in some cases might not rep­re­sent the best choice. For ex­am­ple in the case of the ESS­nuSB Ac­cu­mu­la­tor Ring, ac­cel­er­at­ing the pro­tons in­ject­ing them to the ring could rep­re­sent sav­ings in cap­i­tal cost, re­duced risk of losses in the linac and trans­fer lines and sim­pli­fi­ca­tion to the over­all pro­ject. This work pre­sents the de­vel­op­ment of a method al­low­ing to op­ti­mize the 4D Li­ou­vil­lian ac­cu­mu­la­tion of high-power pro­ton and heavy ion beams and fin­ishes with a dis­cus­sion on the pros and cons of pro­ton in­jec­tion com­pared to more tra­di­tional H⁻ strip­ping in­jec­tion method.
 
poster icon Poster THBP22 [2.126 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP22  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP23 Exploring Space Charge and Intra-beam Scattering Effects in the CERN Ion Injector Chain space-charge, emittance, scattering, operation 515
 
  • E. Waagaard
    EPFL, Lausanne, Switzerland
  • H. Bartosik
    CERN, Meyrin, Switzerland
 
  As of today, the LHC ion physics pro­gramme is mostly based on Pb ion col­li­sions. The AL­ICE3 de­tec­tor pro­posal re­quests sig­nif­i­cantly higher nu­cleon-nu­cleon lu­mi­nosi­ties, as com­pared to today¿s op­er­a­tion. This im­proved per­for­mance could be po­ten­tially achieved with lighter ion species than Pb. In this re­spect, the CERN Ion In­jec­tor chain (con­sist­ing of Linac3, LEIR, PS and SPS) will need to pro­vide sig­nif­i­cantly higher beam in­ten­si­ties with light ion beams as com­pared to the pre­sent ones, whereas op­er­a­tional ex­pe­ri­ence with such beams is lim­ited. We pre­sent space charge and in­tra-beam scat­ter­ing stud­ies across the Ion In­jec­tor chain and strate­gies to build bench­marked sim­u­la­tion mod­els for op­ti­mised ion per­for­mance. This is the first step for iden­ti­fy­ing the ideal ion iso­topes and charge states for max­imised LHC lu­mi­nos­ity pro­duc­tion.  
poster icon Poster THBP23 [2.744 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP23  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP24 RCS and Accumulator Rings Designs for ISIS II space-charge, proton, emittance, lattice 519
 
  • D.J. Adams
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • H.V. Cavanagh, I.S.K. Gardner, B.S. Kyle, H. Rafique, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the spal­la­tion neu­tron source at the Ruther­ford Ap­ple­ton Lab­o­ra­tory in the UK, which pro­vides 0.2 MW of beam power via a 50 Hz, 800 MeV pro­ton RCS. De­tailed stud­ies are now un­der­way to find the op­ti­mal con­fig­u­ra­tion for a next gen­er­a­tion, short-pulsed neu­tron source that will de­fine a major ISIS up­grade, with con­struc­tion be­gin­ning ~2031. De­ter­min­ing the op­ti­mal spec­i­fi­ca­tion for such a fa­cil­ity is the sub­ject of an on­go­ing study in­volv­ing neu­tron users, tar­get and in­stru­ment ex­perts. The ac­cel­er­a­tor de­signs being con­sid­ered for the MW beam pow­ers re­quired, in­clude pro­pos­als ex­ploit­ing FFA rings as well as con­ven­tional ac­cu­mu­la­tor and RCS rings. This paper sum­marises work on physics de­signs for the con­ven­tional rings. De­tails of lat­tice de­signs, in­jec­tion and ex­trac­tion sys­tems, cor­rec­tion sys­tems as well as de­tailed 3D PIC sim­u­la­tions used to en­sure 0.1% losses and low foil hits are pre­sented. De­signs for a 0.4 to 1.2 GeV RCS and 1.2 GeV AR are out­lined. Work on the next stages of the study are also sum­marised to bench­mark and min­imise pre­dicted losses, and thus max­imise the high in­ten­sity limit of de­signs.  
poster icon Poster THBP24 [3.231 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP24  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP28 A Phase Trombone for the Fermilab PIP-II Beam Transfer Line booster, lattice, linac, collimation 527
 
  • M. Xiao, D.E. Johnson, J.-F. Ostiguy
    Fermilab, Batavia, Illinois, USA
 
  The PIP-II beam trans­fer line (BTL) trans­ports the beam from the PIP-II Linac to the Booster syn­chro­tron ring. A cru­cial as­pect of the BTL de­sign is the col­li­ma­tion sys­tem which play a vital role in re­mov­ing large am­pli-tude par­ti­cles that may oth­er­wise miss the hor­i­zon­tal and ver­ti­cal edges of the foil at the point of in­jec­tion into the Booster. To en­sure the ef­fec­tive­ness of the col­li­ma­tors, sim­u­la­tions were con­ducted to de­ter­mine op­ti­mal place-ment within the BTL. These sim­u­la­tions re­vealed that pre­cise con­trol of the ac­cu­mu­lated phase ad­vances be-tween the col­li­ma­tors and the foil is crit­i­cal. To achieve fine-tun­ing of the phase ad­vance, a phase trom­bone was in­cor­po­rated within the BTL. This paper pre­sents the de­sign and im­ple­men­ta­tion de­tails of this phase trom-bone  
poster icon Poster THBP28 [0.798 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP28  
About • Received ※ 20 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP29 Effects of Cavity Pre-Detuning on RF Power Transients at Injection into the LHC cavity, simulation, operation, controls 530
 
  • B.E. Karlsen-Bæck, T. Argyropoulos, A.C. Butterworth, R. Calaga, I. Karpov, H. Timko, M. Zampetakis
    CERN, Meyrin, Switzerland
 
  At in­jec­tion into the LHC, the RF sys­tem is per­turbed by beam-in­duced volt­age re­sult­ing in strong RF power tran­sients and the in­stant de­tun­ing of the cav­i­ties. The au­to­matic tun­ing sys­tem, how­ever, needs time for the me­chan­i­cal com­pen­sa­tion of the res­o­nance fre­quency to take place. Act­ing back on the beam, the tran­sients in RF power are ex­pected to limit the max­i­mum in­jected in­ten­sity by gen­er­at­ing un­ac­cept­able beam loss. Re­duc­ing them is there­fore es­sen­tial to reach the tar­get in­ten­sity dur­ing the High Lu­mi­nos­ity (HL) LHC era. At LHC flat bot­tom, the cav­i­ties are op­er­ated using the half-de­tun­ing beam-load­ing com­pen­sa­tion scheme. As im­ple­mented today, the tuner con­trol al­go­rithm starts act­ing only after the in­jec­tion of the first longer bunch train which causes the bunches for this in­jec­tion to ex­pe­ri­ence the largest power spikes. This con­tri­bu­tion pre­sents an adapted de­tun­ing scheme for the RF cav­i­ties be­fore in­jec­tion. It was pro­posed as a path to de­crease the tran­sients, hence in­creas­ing the avail­able in­ten­sity mar­gin for the avail­able RF power. The ex­pected gain is eval­u­ated in par­ti­cle track­ing sim­u­la­tions and mea­sure­ments ac­quired dur­ing op­er­a­tion.  
poster icon Poster THBP29 [3.711 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP29  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP31 Electron Cloud Effects in the CERN Accelerators in Run 3 electron, operation, kicker, simulation 538
 
  • L. Mether, H. Bartosik, L. Giacomel, G. Iadarola, S. Johannesson, I. Mases Solé, K. Paraschou, G. Rumolo, L. Sabato, C. Zannini, E. de la Fuente
    CERN, Meyrin, Switzerland
  • S. Johannesson
    EPFL, Lausanne, Switzerland
 
  Sev­eral of the ma­chines in the CERN ac­cel­er­a­tor com­plex, in par­tic­u­lar the Large Hadron Col­lider (LHC) and the Super Pro­ton Syn­chro­tron (SPS), are prone to the build-up of elec­tron clouds. Elec­tron cloud ef­fects are ob­served es­pe­cially when the ma­chines are op­er­ated with a 25 ns bunch spac­ing, which has rou­tinely been used in the LHC since the start of its sec­ond op­er­a­tional run in 2015. After the com­ple­tion of the LHC In­jec­tors Up­grade pro­gram dur­ing the lat­est long shut­down pe­riod, the ma­chines are cur­rently op­er­ated with un­prece­dented bunch in­ten­sity and beam bright­ness. With the in­crease in bunch in­ten­sity, elec­tron cloud ef­fects have be­come one of the main per­for­mance lim­i­ta­tions, as pre­dicted by sim­u­la­tion stud­ies. In this con­tri­bu­tion we pre­sent the ex­per­i­men­tal ob­ser­va­tions of elec­tron cloud ef­fects since 2021 and dis­cuss their im­pli­ca­tions for the fu­ture op­er­a­tion of the com­plex.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP31  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP37 Refining the LHC Longitudinal Impedance Model impedance, cavity, simulation, damping 559
 
  • M. Zampetakis, T. Argyropoulos, Y. Brischetto, R. Calaga, L. Giacomel, B.E. Karlsen-Bæck, I. Karpov, I. Karpov, N. Mounet, B. Salvant, H. Timko
    CERN, GENEVA, Switzerland
  • B.E. Karlsen-Bæck
    INFN-Roma, Roma, Italy
 
  Mod­el­ling the lon­gi­tu­di­nal im­ped­ance for the Large Hadron Col­lider (LHC) has been a long-stand­ing ef­fort, es­pe­cially in view of its High-Lu­mi­nos­ity (HL) up­grade. The re­sult­ing im­ped­ance model is an es­sen­tial input for beam dy­nam­ics stud­ies. In­creased beam in­ten­si­ties in the HL-LHC era will pose new chal­lenges like RF power lim­i­ta­tions, beam losses at in­jec­tion and cou­pled-bunch in­sta­bil­i­ties through­out the ac­cel­er­a­tion cycle. Start­ing from the ex­ist­ing lon­gi­tu­di­nal im­ped­ance model, ef­fort has been made to iden­tify the main con­tribut­ing de­vices and im­prove their mod­el­ling. Loss of Lan­dau damp­ing (LLD) sim­u­la­tions are per­formed to in­ves­ti­gate the de­pen­dence of the sta­bil­ity thresh­old on the com­plete­ness of the im­ped­ance model and its broad-band cut-off fre­quency. Plans to per­form beam mea­sure­ments to es­ti­mate the cut-off fre­quency, by in­ves­ti­gat­ing the LLD thresh­old in op­er­a­tion, are also dis­cussed.  
poster icon Poster THBP37 [5.606 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP37  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP38 Two-Dimensional Longitudinal Painting at Injection into the CERN PS Booster linac, target, synchrotron, emittance 563
 
  • S.C.P. Albright, F. Asvesta, B. Bielawski, C. Bracco, P.K. Skowroński, R. Wegner
    CERN, Meyrin, Switzerland
 
  To in­ject high­est beam in­ten­si­ties at the trans­fer from Linac4 into the four rings of the PS Booster (PSB) at CERN, pro­tons must be ac­cu­mu­lated dur­ing up to 148 turns in total. With the con­ven­tional, fixed chop­ping pat­tern this process re­sults in an ap­prox­i­mately rec­tan­gu­lar dis­tri­b­u­tion in the lon­gi­tu­di­nal phase space. As the bucket shape in the PSB does not cor­re­spond to this dis­tri­b­u­tion, the process leads to lon­gi­tu­di­nal mis­match, con­tribut­ing to emit­tance growth and re­duced trans­mis­sion. The field in the last ac­cel­er­at­ing cav­ity of Linac4 can be mod­u­lated, which leads to fine cor­rec­tions of the ex­tracted beam en­ergy. At the same time, the chop­ping pat­tern can be var­ied. Com­bin­ing both al­lows in­ject­ing a near uni­form lon­gi­tu­di­nal dis­tri­b­u­tion whose bound­ary cor­re­sponds to an iso-Hamil­ton­ian con­tour of the RF bucket, hence sig­nif­i­cantly re­duc­ing mis­match. In an op­er­a­tional con­text, the lon­gi­tu­di­nal paint­ing must be con­trolled in a way that al­lows easy in­ten­sity vari­a­tion, and can even re­quire dif­fer­ent paint­ing con­fig­u­ra­tions for each of the four PSB rings. This con­tri­bu­tion pre­sents the first demon­stra­tion of lon­gi­tu­di­nal paint­ing in the PSB, and its im­pact on beam per­for­mance.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP38  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP39 Advances on LHC RF Power Limitation Studies at Injection cavity, operation, klystron, controls 567
 
  • H. Timko, T. Argyropoulos, R. Calaga, N. Catalán Lasheras, K. Iliakis, B.E. Karlsen-Bæck, I. Karpov, M. Zampetakis
    CERN, Meyrin, Switzerland
 
  The av­er­age power con­sump­tion of the main RF sys­tem dur­ing beam in­jec­tion in the High-Lu­mi­nos­ity Large Hadron Col­lider is ex­pected to be close to the max­i­mum avail­able kly­stron power. Power tran­sients due to the mis­match of the beam and the ac­tion of con­trol loops will ex­ceed the avail­able power. This paper pre­sents the most re­cent es­ti­ma­tions of the in­jec­tion volt­age and steady-state power needed for HL-LHC in­ten­si­ties, tak­ing also beam sta­bil­ity into ac­count. It sum­marises mea­sure­ment and sim­u­la­tion ef­forts on­go­ing to bet­ter un­der­stand power tran­sients and beam losses, and de­scribes the op­er­a­tional mar­gin to be taken into ac­count for dif­fer­ent equip­ment.  
poster icon Poster THBP39 [0.861 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP39  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 20 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP45 Longitudinal Collective Effects at Beam Transfer from PS to SPS at CERN simulation, beam-loading, impedance, cavity 587
 
  • A. Lasheen, H. Damerau, I. Karpov, G. Papotti, E.T. Vinten
    CERN, Meyrin, Switzerland
 
  The hard­ware up­grades of the LHC In­jec­tors Up­grade (LIU) pro­ject at CERN were com­pleted dur­ing the Long Shut­down 2 (2019-2021) to pre­pare the in­jec­tors for the beams re­quired by the High Lu­mi­nos­ity (HL) LHC. Dou­bling the bunch in­ten­sity leads to new chal­lenges due to col­lec­tive ef­fects. Al­though many bot­tle­necks were al­ready solved, a re­main­ing lim­i­ta­tion is the im­por­tant loss of par­ti­cles at trans­fer from the Pro­ton Syn­chro­tron (PS) to the Super Pro­ton Syn­chro­tron (SPS). The max­i­mum trans­mis­sion achieved since the restart in 2021 is in the order of 90%, yet lead­ing to un­nec­es­sary ac­ti­va­tion of the SPS. The losses are dis­trib­uted at var­i­ous in­stants of the SPS cycle: fast in­ten­sity decay right after in­jec­tion, slow losses along the in­jec­tion plateau while wait­ing for mul­ti­ple in­jec­tions from the PS, and un­cap­tured beam re­moved at start of ac­cel­er­a­tion. In this con­tri­bu­tion, the focus is on lon­gi­tu­di­nal as­pects of trans­fer losses and more specif­i­cally on in­ten­sity ef­fects dur­ing the non-adi­a­batic bunch short­ing per­formed in the PS prior to ex­trac­tion, as well as on the lon­gi­tu­di­nal mis­match at in­jec­tion due to mis­aligned bunch phases in the SPS caused by tran­sient beam load­ing.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP45  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP55 Commissioning of NICA Injection Complex booster, electron, acceleration, operation 618
 
  • V.A. Lebedev, O.I. Brovko, A.V. Butenko, E.E. Donets, B.V. Golovenskiy, E.V. Gorbachev, S.A. Kostromin, K.A. Levterov, I.N. Meshkov, A.S. Sergeev, M.M. Shandov, A.O. Sidorin, V.L. Smirnov, E. Syresin, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • I. Nikolaichuk, A.Yu. Ramsdorf
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  The Nu­clotron-based Ion Col­lider fA­cil­ity (NICA) is under con­struc­tion at JINR. The NICA pro­ject goal is to pro­vide col­lid­ing beams for stud­ies of col­li­sions of heavy fully stripped ions and light p¿la­i­rized ions. The NICA Col­lider in­cludes two rings with 503 m cir­cum­fer­ence each and the in­jec­tion com­plex. For the heavy ion mode, the in­jec­tion com­plex con­sists of fol­low­ing ac­cel­er­a­tors: 3.2 MeV/u linac (HILAC), 600 MeV/u (A/Z=6) su­per­con­duct­ing booster syn­chro­tron (Booster) and main su­per­con­duct­ing syn­chro­tron (Nu­clotron) with ki­netic en­ergy up to 3.9 GeV/u (A/Z=2.5). The in­jec­tion com­plex has been under com­mis­sion­ing for more than 2 years. Its Run IV was car­ried from Oc­to­ber 2022 to Feb­ru­ary of 2023. It was aimed on the in­jec­tion com­plex prepa­ra­tion for the col­lider op­er­a­tions in the heavy ion mode. Ad­di­tion­ally, the slowly ex­tracted 3.9 GeV/u xenon beam was de­liv­ered to the BM&N ex­per­i­ment re­sult­ing in 250 mil­lion events in the de­tec­tor. The paper dis­cusses main re­sults of the in­jec­tion com­plex com­mis­sion­ing and plans for its fur­ther de­vel­op­ment. The beam com­mis­sion­ing of the col­lider is ex­pected in the 2nd half of 2025.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP55  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1I2 Design and Beam Commissioning of Dual Harmonic RF System in CSNS RCS cavity, bunching, MMI, space-charge 633
 
  • H.Y. Liu, L. Huang
    IHEP CSNS, Guangdong Province, People’s Republic of China
  • Y. Liu
    DNSC, Dongguan, People’s Republic of China
  • S. Wang, S.Y. Xu
    IHEP, Beijing, People’s Republic of China
 
  The CSNS ac­cel­er­a­tor achieved an av­er­age beam power on tar­get of 100 kW in Feb­ru­ary 2020 and sub­se­quently in­creased it to 125 kW in March 2022. Build­ing upon this suc­cess, CSNS plans to fur­ther en­hance the av­er­age beam power to 200 kW by dou­bling the par­ti­cle num­ber of the cir­cu­lat­ing beam in the RCS, while keep­ing the in­jec­tion en­ergy same. The space charge ef­fect is a main limit for the beam in­ten­sity in­crease in high-power par­ti­cle ac­cel­er­a­tors. By pro­vid­ing a sec­ond har­monic RF cav­ity with a har­monic num­ber of 4, in com­bi­na­tion with the fer­rite cav­ity with a har­monic num­ber of 2, the dual har­monic RF sys­tem aims to mit­i­gate emit­tance in­crease and beam loss caused by space charge ef­fects, thereby op­ti­miz­ing the lon­gi­tu­di­nal beam dis­tri­b­u­tion. This paper will con­cen­trate on the beam com­mis­sion­ing for the 140 kW op­er­a­tion sub­se­quent to the in­stal­la­tion of the mag­netic alloy (MA) cav­ity. The com­mis­sion­ing process in­cludes the op­ti­miza­tion of RF pa­ra­me­ters, beam stud­ies, and eval­u­a­tion of the beam qual­ity and in­sta­bil­ity.  
slides icon Slides FRA1I2 [4.086 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA1I2  
About • Received ※ 30 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I3 Summary of the Working Group C on Accelerator Systems impedance, cavity, target, laser 670
 
  • S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • H. Huang
    BNL, Upton, New York, USA
  • P.K. Saha
    JAEA/J-PARC, Tokai-mura, Japan
 
  This is a sum­mary of the pre­sen­ta­tions and dis­cus­sions of the Ac­cel­er­a­tor Sys­tem work­ing group at the 68th ICFA Ad­vanced Beam Dy­nam­ics Work­shop on High-In­ten­sity and High-Bright­ness Hadron Beams.  
slides icon Slides FRA2I3 [0.262 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I3  
About • Received ※ 22 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 15 December 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)