Keyword: klystron
Paper Title Other Keywords Page
THBP39 Advances on LHC RF Power Limitation Studies at Injection injection, cavity, operation, controls 567
 
  • H. Timko, T. Argyropoulos, R. Calaga, N. Catalán Lasheras, K. Iliakis, B.E. Karlsen-Bæck, I. Karpov, M. Zampetakis
    CERN, Meyrin, Switzerland
 
  The average power consumption of the main RF system during beam injection in the High-Luminosity Large Hadron Collider is expected to be close to the maximum available klystron power. Power transients due to the mismatch of the beam and the action of control loops will exceed the available power. This paper presents the most recent estimations of the injection voltage and steady-state power needed for HL-LHC intensities, taking also beam stability into account. It summarises measurement and simulation efforts ongoing to better understand power transients and beam losses, and describes the operational margin to be taken into account for different equipment.  
poster icon Poster THBP39 [0.861 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP39  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 20 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP57 A Novel RF Power Source for the ESS-Bilbao Ion Source controls, ion-source, proton, EPICS 621
 
  • S. Masa, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, R. Miracoli, S. Varnasseri
    ESS Bilbao, Zamudio, Spain
 
  This paper presents the improvements in the ESS Bilbao Proton Ion Source by replacing the amplified radio frequency (RF) pulse of a Klystron-based amplification system using a Solid-State Power Amplifier (SSPA). This new amplification system is based on a 1kW SSPA (2.7 GHz), a Compact-RIO (cRIO) device, a voltage-controlled RF attenuator and auxiliary electronics. The Experimental Physics and Industrial Control System (EPICS) serves as distributed control system (DCS) for controlling and monitoring the data required to achieve a 1.5 ms flat and stable pulse at repetition rate of 14 Hz. The following lines describe the structural and control system changes done in the ion source due to the addition of the SSPA-based amplification system, along with the results of the proton beam extraction tests that demonstrate how this system can serve as a viable substitute for the Klystron-based amplification system.  
poster icon Poster THBP57 [2.265 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP57  
About • Received ※ 28 September 2023 — Accepted ※ 09 October 2023 — Issued ※ 26 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)