Keyword: ion-source
Paper Title Other Keywords Page
THBP08 Simulation Studies on the Low Energy Beam Transfer (LEBT) System of the ISIS Neutron Spallation Source rfq, LEBT, solenoid, space-charge 454
 
  • S.A. Ahmadiannamin, D.C. Faircloth, S.R. Lawrie, A.P. Letchford, T.M. Sarmento, O.A. Tarvainen
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The transmission efficiency and beam dynamic parameters of the low-energy beam transfer (LEBT) section of proton accelerators, serving as a neutron spallation source, have a critical impact on beam loss in subsequent sections of the linear accelerator. Due to variations and mismatches, the beam parameters at the entrance of the radio-frequency quadrupole (RFQ) change, significantly affecting the transmission efficiency of the RFQ and the matching between RFQ and drift tube linac (DTL) structures. Recognizing the importance of this concept, particle-in-cell studies were conducted to optimize the LEBT section of the ISIS accelerator. This study presents the results of simulations.  
poster icon Poster THBP08 [1.081 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP08  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 30 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP46 Simulation of the ESS Proton Beam Window Scattering target, scattering, simulation, proton 591
 
  • E.D. Fackelman, E. Adli, H.E. Gjersdal, K.N. Sjobak
    University of Oslo, Oslo, Norway
  • Y. Levinsen, A. Takibayev, C.A. Thomas
    ESS, Lund, Sweden
 
  The European Spallation Source produces neutrons used for science by delivering a 5MW proton beam to a tungsten target. The proton beam parameters must remain within a well-defined range during all phases of facility exploitation. The proton beam parameters are measured and monitored by an instrumentation suite, among which are two beam imaging systems. Parameters such as position and beam current density can be calculated from the images, supporting beam tuning and operation. However, one of the two systems may be affected by beam scattering. In this paper, we will focus on modelling the impact of the scattering on the beam on target distribution. The modelling process, involving simulation codes such as Geant4 and two-dimensional convolution in Matlab, is described. Initially, Geant4 simulates a scattered pencil beam. The resulting distribution is fitted and can be used similarly to an instrument response in image processing to model any possible beam distribution. Finally, we discuss the results of the scattered beam imaging model, showing the range of applications of the model and the impact of scattering on the beam parameters.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP46  
About • Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP57 A Novel RF Power Source for the ESS-Bilbao Ion Source controls, proton, klystron, EPICS 621
 
  • S. Masa, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, R. Miracoli, S. Varnasseri
    ESS Bilbao, Zamudio, Spain
 
  This paper presents the improvements in the ESS Bilbao Proton Ion Source by replacing the amplified radio frequency (RF) pulse of a Klystron-based amplification system using a Solid-State Power Amplifier (SSPA). This new amplification system is based on a 1kW SSPA (2.7 GHz), a Compact-RIO (cRIO) device, a voltage-controlled RF attenuator and auxiliary electronics. The Experimental Physics and Industrial Control System (EPICS) serves as distributed control system (DCS) for controlling and monitoring the data required to achieve a 1.5 ms flat and stable pulse at repetition rate of 14 Hz. The following lines describe the structural and control system changes done in the ion source due to the addition of the SSPA-based amplification system, along with the results of the proton beam extraction tests that demonstrate how this system can serve as a viable substitute for the Klystron-based amplification system.  
poster icon Poster THBP57 [2.265 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP57  
About • Received ※ 28 September 2023 — Accepted ※ 09 October 2023 — Issued ※ 26 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)