

ENERGY

Mitigation of Space Charge Effects in RHIC and its Injectors

V. Schoefer, C. Gardner, K. Hock, H. Huang, C.Liu, K. Zeno

68th ICFA Advance Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams 10/11/2023

Overview

- RHIC complex and the need for space charge mitigation
- Survey of intensity dependent effects during:
 - Polarized proton operation
 - Gold beam operation
 - In the injectors
 - Low energy (3.85 GeV/n) colliding beam operation in RHIC

RHIC Accelerator Complex

Accelerator Rings

	Circumference [m]
Booster	201
AGS	807
RHIC	3833

Typical Top Energies [Total, GeV/N]				
	Au	Pol. Protons		
Linac (H ⁻)		1.1		
Booster	1	2.3		
AGS	10	23.8		
RHIC	100	255		

Heavy lons	Protons
E-beam Ion Source (EBIS)	OPPIS (polarized)
Tandem Van de Graaf	High-intensity H ⁻ (unpolarized)

RHIC Physics Program

- To date: 12 different species combinations in collision
- Polarized p-p and p-ion collider operation
- Energy scan of Au-Au collisions from 100 GeV/N (max) down to sub-injection energies as low as 3.85 GeV/N

Beam energy scan at low energies

Polarized proton operation

RHIC Polarized Beam Complex

8 %

RHIC

Depolarizing resonances

- Most remaining depolarization between the source and RHIC is from intrinsic resonances
 - High amplitude particles sample higher focusing fields in quads
 - More depolarization at higher betatron amplitude

Polarization transmission through single resonance (gaussian beam, emittance *I*):

$$\frac{P_f}{P_i} = \frac{1 - \frac{\pi I}{\alpha I_o} |\varepsilon(I_o)|^2}{1 + \frac{\pi I}{\alpha I_o} |\varepsilon(I_o)|^2} \approx 1 - \frac{2\pi}{\alpha} |\varepsilon(I_o)|^2 \frac{I}{I_o}$$

 $P_{f_i}P_i$ = final, initial polarization I = rms transverse emittance I_0 = reference emittance $\varepsilon(I_0)$ = resonance strength at ref emittance α = resonance crossing rate

Measured with transversely thin (~10 um) carbon target inserted at varying transverse locations in beam

Polarized collider performance

Collider luminosity, $\boldsymbol{\mathcal{L}}$

 $\mathcal{L} \propto \frac{N^2}{\varepsilon}$ N = intensity/ bunch ε = tran. emittance

Polarized collider figure of merit (for polarization P):

FOM = $\begin{cases} \mathcal{L} P^2 & \text{transverse spin} \\ \mathcal{L} P^4 & \text{longitudinal spin} \end{cases}$

Since both emittance and polarization degrade with intensity figure of merit decreases rapidly

FOM dependence on intensity closer to linear in N than quadratic.

Proton Acceleration in Booster

- H- Linac delivers up to 1x10¹² in 300 us pulse
- Adiabatic RF capture (h=1,2)
- Acceleration ~70 ms
- Transverse scrapes
 - Orbit bumps against apertures
 - Reduce intensity and emittance to RHIC requirements
 - Generally more vertical scraping than horizontal (strong intrinsic resonances are vertical)

	Energy (Kin. GeV)	Intensity (10 ¹¹)
Injection	0.2	6-8
Extraction	1.416	2.5

Injection of H⁻ into Booster

- Injection of coasting beam with tunes near and just above ¹/₂
 - Coasting beam has small space charge
 - Half-integer tune + half integer stopband correction quads minimize beta at stripping foil location
 - Minimizes scattering due to foil
- Tunes pulled up away from half before bunching
 - Max space charge tune shift dQ_{sc} = -0.4
- Injection tune: empirical tradeoff between scattering and proximity to half integer

Injection of H⁻ into Booster

- Injection of coasting beam with tunes near and just above ¹/₂
 - Coasting beam has small space charge
 - Half-integer tune + half integer stopband correction quads minimize beta at stripping foil location
 - Minimizes scattering due to foil
- Tunes pulled up away from half before bunching
 - Max space charge tune shift dQ_{sc} = -0.4
- Injection tune: empirical tradeoff between scattering and proximity to half integer

Booster Stopband Correction

- Higher order multipoles available in Booster
 - In use since high intensity (>10¹³/pulse) operation
- No direct measurement of beam size in Booster
 - Transverse sizes gauged by intensity through scrapes
- Third integer stop band correction applied at injection energy +30% better transmission to Booster extraction

Dual Harmonic RF in Booster

- Reduction of peak intensity with second harmonic RF defocusing
- Adiabatic capture of injected coasting beam with h=1 and h=2
- 25% reduction of peak current
- +15% transmission at typical operating intensity with scraping present
- More improvement without scraping
 - Implies some particle blown out to high amplitude and lost in the scrape

Dual Harmonic in AGS

Space charge tune shift at AGS injection: $dQ_{sc,x,y} = -0.11$, -0.23

Larger dQ_{sc} in vertical due to preferentially vertical scraping: $\epsilon_{x,y}$ = 1.4, 0.6 µm (rms norm)

With dual harmonic 10% reduction of vertical emittance, horizontal unchanged (consistent with larger vertical dQ_{sc})

Dashed line marks end of h=12 (freq limited) Some apparent early cycle changes ($\gamma < 5$) due to changes in dp/p, beam centroid motion, instrumental errors

Gold beam operation

Longitudinal Merges

RHIC heavy ion physics per bunch intensity needs merging several cycles of ion source pulses

RHIC operation: N ~2-3x10⁹

<u>Booster</u>: $4 \rightarrow 2 \rightarrow 1$

In 12 separate cycles

AGS: $12 \rightarrow 6 \rightarrow 2$

AGS extraction 2.5-3 x 10⁹ / bunch

Longitudinal Merges: AGS injection

Space charge bottleneck in AGS comes after second merge ($6 \rightarrow 2$ bunches)

• $dQ_{sc} \sim -0.4$ in both planes

Merges occur at low energy due to frequency range limitations on lower harmonic cavities (h=4, 8)

Modification of h=4,8 cavity capacitance allowed second merge from $6 \rightarrow 2$ bunches at higher γ

$\gamma^{-2} \sim = 10\%$ reduction in dQ_{sc}

Peak intensity with the higher merge porch ~12% higher (commensurate with reduction in peak current)

Low Energy Au RHIC collisions

- Space charge at normal collision energy (100 GeV/N) typically negligible
- Search for QCD critical point required collisions at beam energies at or below nominal injection (9.8 GeV/N)
 - 9.8 , 7.3, 5.75, 4.6, 3.85 GeV/N
- Initial attempts ~2010 "Beam Energy Scan I" (BES-I) successful, but luminosity seriously limited by beam lifetime
 - Dominated by intrabeam scattering (IBS time of order minutes)
 - Also includes effects of space charge up to dQ_{sc} = 0.1 at lowest energy in steady state collider mode
- 2019-2021: BES-II
 - Repeat energies from BES-I
 - Now with Low Energy RHIC Electron Cooling (LEReC) facility
 - Counteracts IBS, but adds new optimization challenges

Low Energy RHIC collisions: Bunch lengthening

- At 3.85 GeV, per bunch intensity as high as N =1.5x10⁹
 - Modest compared to ordinary RHIC intensity
 - Low energy means dQ_{sc} ~ 0.1 while in collision
- Space charge kicks: ions $\leftarrow \rightarrow$ electrons
 - Tune working point $Q_{x,y} \sim 0.12$
- Capture at 3.85 GeV/n in 9 MHZ RF (h=120)
 - 28 MHz (normally used for high energy acceleration) used to defocus, reduce peak current ~20%
- Factor 2 increase in luminosity (peak and integrated)
- Secondary benefit: space charge focusing of the ions on the electron is more uniform
 - Optimization for the 'average' electron bunch more closely reflects the group optimum

Low Energy RHIC collisions: Bunch lengthening

- At 3.85 GeV, per bunch intensity as high as N =1.5x10⁹
 - Modest compared to ordinary RHIC intensity
 - Low energy means dQ_{sc} ~ 0.1 while in collision
- Space charge kicks: ions ←→electrons
 - Tune working point $Q_{x,y} \sim 0.12$
- Capture at 3.85 GeV/n in 9 MHZ RF (h=120)
 - 28 MHz (normally used for high energy acceleration) used to defocus, reduce peak current ~20%
- Factor 2 increase in luminosity (peak and integrated)
- Secondary benefit: space charge focusing of the ions on the electron is more uniform
 - Optimization for the 'average' electron bunch more closely reflects the group optimum

Luminosity in BES-II

BES-II shows x4-10 gain in average luminosity over BES-I

- LEReC and space charge effects most important for lowest two energies
- Full story involves more optimizations see:
 - C. Liu et al, Phys. Rev. Accel. Beams **25**, 051001

Future work

- Most space charge/collective effects work in RHIC era injectors is empirical "tuning"
 - Space charge 'whack-a-mole'
 - Studies have primarily focused on polarization directly (helical dipoles, tune jumps...)
- Limited recent dedicated studies of intensity effects
 - M. Balcewicz et al, Space charge driven third order resonance at AGS injection, NAPAC'22
 - F. Meot, AGS resonance driving term studies (2014, unpublished)
- EIC era calls for N > 3x10¹¹ from AGS with high polarization- Motivates a dedicated simulation/measurement campaign
 - Is observed stopband correction consistent with understanding of lattice? (e.g. why is the 3rd integer in Booster particularly strong)
 - Do the complicated helical dipole fields in AGS present high order driving terms relevant to intensity dependent effects? Is the beta distortion important?
 - Is the instrumentation sufficient to detect all likely effects?

Summary

- Both the heavy ion and proton RHIC programs benefit from compensation of space charge effects
 - The polarized beam program performance has particularly high sensitivity to emittance growth
- Bunch lengthening and stopband correction have been successfully used to improve performance
- The low energy RHIC collider program was a unique experience in collider operations under conditions of large space charge
- We look forward to making a comprehensive push to understand intensity dependent effects to make more progress on highly polarized bright beams into the EIC era