Paper | Title | Other Keywords | Page |
---|---|---|---|
MOA3I3 | High-Power Targetry and the IMPACT Initiative at Paul Scherrer Institute | target, radiation, operation, proton | 30 |
|
|||
The main challenges to operate a high-power target are dissipation of the heat and radiation damage. The latter refers to the damage of the material. Since the breakdown of the material depends on the operation temperature and other conditions, like the material treatment before irradiation, it is difficult to predict. To reduce failures, target operation parameters and beam properties have to be monitored carefully. After the failure of the neutron spallation target (SINQ) in 2016, several improvements in the HIPA (High intensity Proton Accelerator) beam line at PSI and the target installation were implemented. However, MW beams are not a prerequisite for the need of high power targets. This is the case at one of the two new target stations within the IMPACT initiative at PSI. One target station will produce radionuclides for research in cancer therapy, while the other will improve the surface muon rate by a factor of 100 for experiments in particle and material physics. In this presentation, strategies for successful operation of high-power targets are shown. Furthermore, the IMPACT initiative at PSI, with focus on the two planned target stations, will be presented. | |||
Slides MOA3I3 [4.909 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I3 | ||
About • | Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 20 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOA4I1 | Design of a Fixed-Field Accelerating Ring for High Power Applications | injection, extraction, synchrotron, resonance | 38 |
|
|||
A fixed field accelerating ring (FFA) has some advantage to achieve high beam power over conventional ring accelerators. It would be also a sustainable option as future proton drivers. We will discuss the design of an FFA taking a future upgrade plan of ISIS (ISIS-II) as an example. | |||
Slides MOA4I1 [14.313 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA4I1 | ||
About • | Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 15 October 2023 — Issued ※ 21 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUA2I1 | Xsuite: An Integrated Beam Physics Simulation Framework | simulation, optics, space-charge, radiation | 73 |
|
|||
Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors. | |||
Slides TUA2I1 [4.388 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2I1 | ||
About • | Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUC2C2 | Evaluating PyORBIT as Unified Simulation Tool for Beam-Dynamics Modeling of the ESS Linac | simulation, DTL, EPICS, space-charge | 102 |
|
|||
The design of the ESS proton linac was supported by the simulation code TraceWin, a closed-source commercial software for accurate multiparticle simulations. Conversely, the high-level physics applications used for beam commissioning and machine tuning rely on the Open XAL framework and its online model for fast envelope simulations. In this paper, we evaluate PyORBIT for both online modeling of the linac for machine commissioning and tuning as well as for more accurate offline simulations for beam-dynamics studies. We present the modifications done to the code to adapt it to this use case, namely porting the code to Python 3, adding an envelope tracker, and integrating with the EPICS control systems. Finally, we show the results of benchmarking PyORBIT against our current modeling tools. | |||
Slides TUC2C2 [0.886 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC2C2 | ||
About • | Received ※ 08 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 14 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUA4C1 | Recent Progress in Loss Control for the ISIS High-Intensity RCS: Geodetic Modelling, Tune Control, and Optimisation | controls, operation, survey, quadrupole | 153 |
|
|||
ISIS operates a high intensity 50 Hz rapid cycling synchrotron (RCS), accelerating up to 3 x 1013 protons from 70 to 800 MeV. Protons are delivered to one muon and two neutron targets over two target stations, totalling 0.2 MW of beam power, enabling around 1000 experiments for approximately 3500 users a year. Minimisation of beam loss and optimisation of its control are central to achieving the best facility performance with minimal machine activation. We summarise recent work aimed at improving loss control in the RCS. Using geodetic survey data we aim to develop lattice models with realistic magnet alignment errors in cpymad. Building on recent measurement campaigns a new and improved system of tune control has been developed and verified using enhanced lattice models with cpymad. More rigorous and quantitative measures of beam loss have been implemented in graphical user interfaces (GUIs) using the QT GUI toolkit python interface PyQT5, and streaming data using the messaging protocol MQTT, in order to optimise loss control. | |||
Slides TUA4C1 [6.044 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA4C1 | ||
About • | Received ※ 28 September 2023 — Revised ※ 13 October 2023 — Accepted ※ 16 October 2023 — Issued ※ 29 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUA4C2 | Application of Programmable Trim Quadrupoles in Beam Commissioning of CSNS/RCS | quadrupole, neutron, MMI, injection | 158 |
|
|||
The China Spallation Neutron Source (CSNS) achieved its design power of 100 kW in 2020 and is currently stably operating at 140 kW after a series of measures. In the process of increasing beam power, 16 programmable trim quadrupoles were installed in the Rapid Cycling Synchrotron (RCS) of CSNS to enable rapid variation of tunes, effective adjustment of Twiss parameters, and restoration of lattice superperiodicity through the machine cycle. This paper provides a detailed introduction to the design of the trim quadrupoles and preliminary results of the machine study. The beam experiments show that the trim quadrupoles play a crucial role in increasing beam power after exceeding 100 kW. | |||
Slides TUA4C2 [4.136 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA4C2 | ||
About • | Received ※ 27 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 22 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEA4C1 | Beam Loss Studies in the CSNS Linac | linac, DTL, emittance, operation | 297 |
|
|||
The China Spallation Neutron Source¿CSNS¿accelerator comprises an 80MeV linac and a 1.6GeV rapid cycling synchrotron. It started operation in 2018, and the beam power delivered to the target has increased from 20kW to 140kW, step by step. Various beam loss studies have been performed through the accelerator to improve the beam power and availability. For the CSNS linac, the primary source of the beam loss is the halo generated by beam mismatches. In the upgrade plan of the CSNS, the beam current will increase five times, which requires more strict beam loss control. Much work is done during the design phase to keep the loss down to 1W/m of loss limit. This paper will report results obtained from beam experiments and optimization methods applied to the CSNS linac upgrade design. | |||
Slides WEA4C1 [3.736 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA4C1 | ||
About • | Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 13 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THA1I3 | Predominantly Electric Storage Ring with Nuclear Spin Control Capability | storage-ring, scattering, experiment, proton | 338 |
|
|||
A predominantly electric storage ring with weak superimposed magnetic bending is shown to be capable of storing two different nuclear isotope bunches, such as helion and deuteron, co-traveling with different velocities on the same central orbit. ‘‘Rear-end’’ collisions occurring periodically in a full acceptance particle detector/polarimeter, allow the (previously inaccessible) direct measurement of the spin dependence of nuclear transmutation for center of mass (CM) kinetic energies ranging from hundreds of keV up toward pion production thresholds. These are ‘‘rear-end collisions’’ occurring as faster stored bunches pass through slower bunches. An inexpensive facility capable of meeting these requirements is described, with nuclear channel h + d arrow α + p as example. | |||
Slides THA1I3 [0.860 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1I3 | ||
About • | Received ※ 07 December 2023 — Accepted ※ 11 December 2023 — Issued ※ 25 December 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THA2C3 | Periodic Solution for Transport of Intense and Coupled Coasting Beams Through Quadrupole Channels | solenoid, coupling, space-charge, quadrupole | 372 |
|
|||
Imposing defined spinning to a particle beam increases its stability against perturbations from space charge [Y.-L. Cheon et al., Effects of beam spinning on the fourth-order particle resonance of 3D bunched beams in high intensity linear accelerators, Phys. Rev. Accel. & Beams 25, 064002 (2022)]. In order to fully explore this potential, proper matching of intense coupled beams along regular lattices is mandatory. Herein, a novel procedure assuming matched transport is described and bench-marked through simulations. The concept of matched transport along periodic lattices has been extended from uncoupled beams to those with considerable coupling between the two transverse degrees of freedom. For coupled beams, matching means extension of cell-to-cell periodicity from just transverse envelopes to the coupled beam moments and to quantities being derived from these. | |||
Slides THA2C3 [1.649 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THA2C3 | ||
About • | Received ※ 25 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 19 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THAFP02 | Resonance Extraction Research Based on China Spallation Neutron Source | extraction, sextupole, resonance, kicker | 397 |
|
|||
Resonance extraction based on the RCS ring is an important aspect of beam applications. This article proposes a new design of resonance extraction based on the CSNS-RCS ring. By adjusting parameters such as the skew sextupole magnet, beam working point, RF-Kicker, etc., the simulation results from PyOrbit demonstrate the ability to rapidly extract a large number of protons within a few turns. | |||
Slides THAFP02 [1.497 MB] | |||
Poster THAFP02 [0.960 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP02 | ||
About • | Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 01 November 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBP02 | FFA Magnet for Pulsed High Power Proton Driver | proton, software, operation, closed-orbit | 436 |
|
|||
Fixed Field Alternating gradient (FFA) accelerator is considered as a proton driver for the next generation spallation neutron source (ISIS-II). To demonstrate its suitability for high intensity operation, an FFA proton prototype ring is planned at RAL, called FETS-FFA. The main magnets are a critical part of the machine, and several characteristics of these magnets require attention, such as doublet spiral structure, essential operational flexibility in terms of machine optics and control of the fringe field extent from the nonlinear optics point of view. This paper will discuss the design of the prototype magnet for FETS-FFA ring. | |||
Poster THBP02 [5.871 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP02 | ||
About • | Received ※ 02 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 23 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBP24 | RCS and Accumulator Rings Designs for ISIS II | injection, space-charge, proton, emittance | 519 |
|
|||
ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK, which provides 0.2 MW of beam power via a 50 Hz, 800 MeV proton RCS. Detailed studies are now underway to find the optimal configuration for a next generation, short-pulsed neutron source that will define a major ISIS upgrade, with construction beginning ~2031. Determining the optimal specification for such a facility is the subject of an ongoing study involving neutron users, target and instrument experts. The accelerator designs being considered for the MW beam powers required, include proposals exploiting FFA rings as well as conventional accumulator and RCS rings. This paper summarises work on physics designs for the conventional rings. Details of lattice designs, injection and extraction systems, correction systems as well as detailed 3D PIC simulations used to ensure 0.1% losses and low foil hits are presented. Designs for a 0.4 to 1.2 GeV RCS and 1.2 GeV AR are outlined. Work on the next stages of the study are also summarised to benchmark and minimise predicted losses, and thus maximise the high intensity limit of designs. | |||
Poster THBP24 [3.231 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP24 | ||
About • | Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 22 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBP27 | Experimental Investigation of Nonlinear Integrable Optics in a Paul Trap | octupole, resonance, experiment, space-charge | 523 |
|
|||
Funding: Work supported by Royal Society grants Octupoles are often used to damp beam instabilities caused by space charge. However, in general the insertion of octupole magnets leads to a nonintegrable lattice which reduces the area of stable particle motion. One proposed solution to this problem is Quasi-Integrable Optics (QIO), where the octupoles are inserted between a specially designed lattice called a T-insert. An octupole with a strength that scales as 1/β3(s) is applied in the drift region to create a time-independent octupole field, leading to a lattice with an invariant Hamiltonian. This means that large tune spreads can be achieved without reducing the dynamic aperture. IBEX is a Paul trap which confines low energy ions with an RF voltage, simulating the transverse dynamics of an alternating gradient accelerator. IBEX has recently undergone an upgrade to allow for octupole fields to be created in the trap in addition to quadrupole focusing. We present our first experimental results from testing QIO with the IBEX trap. jake.flowerdew@physics.ox.ac.uk |
|||
Poster THBP27 [4.163 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP27 | ||
About • | Received ※ 30 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBP28 | A Phase Trombone for the Fermilab PIP-II Beam Transfer Line | booster, linac, injection, collimation | 527 |
|
|||
The PIP-II beam transfer line (BTL) transports the beam from the PIP-II Linac to the Booster synchrotron ring. A crucial aspect of the BTL design is the collimation system which play a vital role in removing large ampli-tude particles that may otherwise miss the horizontal and vertical edges of the foil at the point of injection into the Booster. To ensure the effectiveness of the collimators, simulations were conducted to determine optimal place-ment within the BTL. These simulations revealed that precise control of the accumulated phase advances be-tween the collimators and the foil is critical. To achieve fine-tuning of the phase advance, a phase trombone was incorporated within the BTL. This paper presents the design and implementation details of this phase trom-bone | |||
Poster THBP28 [0.798 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP28 | ||
About • | Received ※ 20 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 30 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBP30 | Linear Modelling and Lattice Correction from Betatron Phase Measurements at the Fermilab Recycler NOvA Ring | betatron, dipole, storage-ring, quadrupole | 534 |
|
|||
Utilizing the measurement of coherent betatron oscilla-tion phase has emerged as a fast and precise approach for identifying and rectifying errors in achieving a desired lattice in CESR (Cornell Electron Storage Ring), using TAO analysis program and BMAD subroutines. One key advantage of betatron phase measurement over ¿ meas-urement is its sensitivity to phase variations between detectors. This software package has been successfully implemented for the Recycler Ring at Fermilab, with the adaptation of different hardware installations. By em-ploying this technique, a linear model of the bare Recy-cler ring was established, enabling the correction of quadrupole errors. | |||
Poster THBP30 [1.476 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP30 | ||
About • | Received ※ 19 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 27 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THBP32 | Xobjects and Xdeps: Low-Level Libraries Empowering Beam Dynamics Simulations | simulation, GPU, target, interface | 543 |
|
|||
Xobjects and Xdeps are Python libraries included in the Xsuite beam dynamics simulation software package. These libraries are crucial to achieving two of the main goals of Xsuite: speed and ease of use. Xobjects allows users to run simulations on various hardware in a platform-agnostic way: with little user intervention single- and multi-threading is supported as well as GPU computations using both CUDA and OpenCL. Xdeps provides support for deferred expressions in Xsuite. Relations among simulation parameters and functions driving properties of lattice elements can be defined or indeed imported from other tools such as MAD-X and then easily updated before or during the simulation. | |||
Poster THBP32 [0.266 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP32 | ||
About • | Received ※ 21 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 17 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||