Keyword: radiation
Paper Title Other Keywords Page
MOA3I3 High-Power Targetry and the IMPACT Initiative at Paul Scherrer Institute target, operation, proton, lattice 30
 
  • D.C. Kiselev
    PSI, Villigen PSI, Switzerland
 
  The main challenges to operate a high-power target are dissipation of the heat and radiation damage. The latter refers to the damage of the material. Since the breakdown of the material depends on the operation temperature and other conditions, like the material treatment before irradiation, it is difficult to predict. To reduce failures, target operation parameters and beam properties have to be monitored carefully. After the failure of the neutron spallation target (SINQ) in 2016, several improvements in the HIPA (High intensity Proton Accelerator) beam line at PSI and the target installation were implemented. However, MW beams are not a prerequisite for the need of high power targets. This is the case at one of the two new target stations within the IMPACT initiative at PSI. One target station will produce radionuclides for research in cancer therapy, while the other will improve the surface muon rate by a factor of 100 for experiments in particle and material physics. In this presentation, strategies for successful operation of high-power targets are shown. Furthermore, the IMPACT initiative at PSI, with focus on the two planned target stations, will be presented.  
slides icon Slides MOA3I3 [4.909 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I3  
About • Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 20 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2I1 Xsuite: An Integrated Beam Physics Simulation Framework simulation, optics, space-charge, lattice 73
 
  • G. Iadarola, A. Abramov, X. Buffat, R. De Maria, D. Demetriadou, L. Deniau, P.D. Hermes, P. Kicsiny, P.M. Kruyt, A. Latina, S. Łopaciuk, L. Mether, K. Paraschou, T. Pieloni, G. Sterbini, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • P. Belanger
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • D. Di Croce, M. Seidel, L. van Riesen-Haupt
    EPFL, Lausanne, Switzerland
  • P.J. Niedermayer
    GSI, Darmstadt, Germany
 
  Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors.  
slides icon Slides TUA2I1 [4.388 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2I1  
About • Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC1I1 Radiation Hardened Beam Instrumentations for Multi-Mega-Watt Beam Facilities target, proton, instrumentation, operation 199
 
  • K. Yonehara
    Fermilab, Batavia, Illinois, USA
 
  A beam instrumentation is an essential element to successfully operate an accelerator machine in which various diagnostic and beam control system are integrated. However, the beam instrumentation performance is often constrained by a prompt radiation dose, integrated radiation dose, operation (ambient) temperature and humidity, available space, and strength of embedded electromagnetic fields at the monitor. These constraints will limit the dynamic range of operational beam parameters, like the maximum achievable beam power. A seamless R&D effort to develop the radiation hardened beam instrumentations has been made for future multi-MW beam facilities. In this presentation, I will show a major beam facility and beam instrumentation which runs or plans a MW beam operation in the near future.  
slides icon Slides WEC1I1 [2.739 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1I1  
About • Received ※ 20 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 12 January 2024
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC1C1 Improvement Design of a Beam Current Monitor Based on a Passive Cavity Under Heavy Heat Load and Radiation pick-up, target, proton, cavity 205
 
  • P.-A. Duperrex, J.E. Bachmann, M. Rohrer, J.L. Sun
    PSI, Villigen PSI, Switzerland
 
  The High Intensity Proton Accelerator at PSI delivers a continuous proton beam of up to 2.4 mA with a maximum energy of 590 MeV to two meson production targets, M and E, and then to the spallation target. Eight meters downstream from the target E located a beam current monitor MHC5, which endure intensive scattered particles from Target E and cause large temperature variation, further induce operation and calibration problems. To address these issues, a graphite monitor was designed to replace the older aluminum one. Based on years of operation experiences of this graphite cavity, improvement design has been also considered, including beam positon pickups refinement, on-line calibration methods implementation, as well as manipulation maintenance issues. Detailed aspects of the performance of the monitor and its improvement design will be presented in this paper.  
slides icon Slides WEC1C1 [4.024 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1C1  
About • Received ※ 01 October 2023 — Revised ※ 04 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 16 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEC1C2 Challenges of Target and Irradiation Diagnostics of the IFMIF-DONES Facility target, neutron, diagnostics, monitoring 210
 
  • C. Torregrosa, J. Maestre, A. Roldán, J. Valenzuela, I. Álvarez Castro
    UGR, Granada, Spain
  • F. Arbeiter, Y.F. Qiu
    KIT, Eggenstein-Leopoldshafen, Germany
  • S. Becerril-Jarque, A. Ibarra, I. Podadera
    Consorcio IFMIF-DONES España, Granada, Spain
  • B. Brenneis
    Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
  • L. Buligins
    IPUL, Salaspils, Latvia
  • J. Castellanos
    Universidad de Castilla-La Mancha, Ciudad Real, Spain
  • N. Chauvin
    CEA-IRFU, Gif-sur-Yvette, France
  • S. Fiore
    CERN, GENEVA, Switzerland
  • D. Jimenez-Rey, F. Mota, C. Oliver, D. Regidor, C. de la Morena
    CIEMAT, Madrid, Spain
  • J. Martínez, P. Matia-Hernando, T. Siegel
    ASE Optics, El Prat De Llobregat, Spain
  • F.S. Nitti
    ENEA Brasimone, Centro Ricerche Brasimone, Camugnano, BO, Italy
  • T. Tadic
    RBI, Zagreb, Croatia
  • U. Wiacek
    IFJ-PAN, Kraków, Poland
 
  Funding: This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme Grant Agreement No 101052200 EUROfusion
IFMIF-DONES will be a first-class scientific infrastructure consisting of an accelerator-driven neutron source delivering 1e17 n/s with a broad peak at 14 MeV. Such neutron flux will be created by impinging a continuous wave 125 mA, 40 MeV, 5 MW deuteron beam onto a liquid Li jet target, circulating at 15 m/s. Material specimens subjected to neutron irradiation will be placed a few millimeters downstream. Some of the most challenging technological aspects of the facility are the Diagnostics to monitor the Li jet, beam parameters on target, and characterization of the neutron irradiation field, with transversal implications in the scientific exploitation, machine protection and safety. Multiple solutions are foreseen, considering among others, Li jet thickness measurement methods based on optical metrology and millimeter-wave radar techniques, Li electromagnetic flowmeters, beam footprint measurements based on residual gas excitation, online neutron detectors such as SPNDs and micro-fission chambers, as well as offline neutron fluence measurements by activation foils or spheres. This contribution provides an overview of these aspects and the associated R&D activities.
 
slides icon Slides WEC1C2 [4.676 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1C2  
About • Received ※ 11 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I5 Summary of Working Group E: Instrumentation and Intercepting Devices target, instrumentation, operation, simulation 677
 
  • P. Forck
    GSI, Darmstadt, Germany
  • P. Hurh
    Fermilab, Batavia, Illinois, USA
  • K. Satou
    KEK, Tokai, Ibaraki, Japan
 
  The talk concerns the summary of the Working Group E related to Instrumentation and Intercepting Devices  
slides icon Slides FRA2I5 [6.640 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I5  
About • Received ※ 26 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 13 January 2024  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)