Paper | Title | Other Keywords | Page |
---|---|---|---|
MOA3I3 | High-Power Targetry and the IMPACT Initiative at Paul Scherrer Institute | target, operation, proton, lattice | 30 |
|
|||
The main challenges to operate a high-power target are dissipation of the heat and radiation damage. The latter refers to the damage of the material. Since the breakdown of the material depends on the operation temperature and other conditions, like the material treatment before irradiation, it is difficult to predict. To reduce failures, target operation parameters and beam properties have to be monitored carefully. After the failure of the neutron spallation target (SINQ) in 2016, several improvements in the HIPA (High intensity Proton Accelerator) beam line at PSI and the target installation were implemented. However, MW beams are not a prerequisite for the need of high power targets. This is the case at one of the two new target stations within the IMPACT initiative at PSI. One target station will produce radionuclides for research in cancer therapy, while the other will improve the surface muon rate by a factor of 100 for experiments in particle and material physics. In this presentation, strategies for successful operation of high-power targets are shown. Furthermore, the IMPACT initiative at PSI, with focus on the two planned target stations, will be presented. | |||
![]() |
Slides MOA3I3 [4.909 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA3I3 | ||
About • | Received ※ 01 October 2023 — Revised ※ 03 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 20 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUA2I1 | Xsuite: An Integrated Beam Physics Simulation Framework | simulation, optics, space-charge, lattice | 73 |
|
|||
Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors. | |||
![]() |
Slides TUA2I1 [4.388 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2I1 | ||
About • | Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEC1I1 | Radiation Hardened Beam Instrumentations for Multi-Mega-Watt Beam Facilities | target, proton, instrumentation, operation | 199 |
|
|||
A beam instrumentation is an essential element to successfully operate an accelerator machine in which various diagnostic and beam control system are integrated. However, the beam instrumentation performance is often constrained by a prompt radiation dose, integrated radiation dose, operation (ambient) temperature and humidity, available space, and strength of embedded electromagnetic fields at the monitor. These constraints will limit the dynamic range of operational beam parameters, like the maximum achievable beam power. A seamless R&D effort to develop the radiation hardened beam instrumentations has been made for future multi-MW beam facilities. In this presentation, I will show a major beam facility and beam instrumentation which runs or plans a MW beam operation in the near future. | |||
![]() |
Slides WEC1I1 [2.739 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1I1 | ||
About • | Received ※ 20 October 2023 — Revised ※ 23 October 2023 — Accepted ※ 05 December 2023 — Issued ※ 12 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEC1C1 | Improvement Design of a Beam Current Monitor Based on a Passive Cavity Under Heavy Heat Load and Radiation | pick-up, target, proton, cavity | 205 |
|
|||
The High Intensity Proton Accelerator at PSI delivers a continuous proton beam of up to 2.4 mA with a maximum energy of 590 MeV to two meson production targets, M and E, and then to the spallation target. Eight meters downstream from the target E located a beam current monitor MHC5, which endure intensive scattered particles from Target E and cause large temperature variation, further induce operation and calibration problems. To address these issues, a graphite monitor was designed to replace the older aluminum one. Based on years of operation experiences of this graphite cavity, improvement design has been also considered, including beam positon pickups refinement, on-line calibration methods implementation, as well as manipulation maintenance issues. Detailed aspects of the performance of the monitor and its improvement design will be presented in this paper. | |||
![]() |
Slides WEC1C1 [4.024 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1C1 | ||
About • | Received ※ 01 October 2023 — Revised ※ 04 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 16 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEC1C2 | Challenges of Target and Irradiation Diagnostics of the IFMIF-DONES Facility | target, neutron, diagnostics, monitoring | 210 |
|
|||
Funding: This work has been carried out within the framework of the EUROfusion Consortium, funded by the European Union via the Euratom Research and Training Programme Grant Agreement No 101052200 EUROfusion IFMIF-DONES will be a first-class scientific infrastructure consisting of an accelerator-driven neutron source delivering 1e17 n/s with a broad peak at 14 MeV. Such neutron flux will be created by impinging a continuous wave 125 mA, 40 MeV, 5 MW deuteron beam onto a liquid Li jet target, circulating at 15 m/s. Material specimens subjected to neutron irradiation will be placed a few millimeters downstream. Some of the most challenging technological aspects of the facility are the Diagnostics to monitor the Li jet, beam parameters on target, and characterization of the neutron irradiation field, with transversal implications in the scientific exploitation, machine protection and safety. Multiple solutions are foreseen, considering among others, Li jet thickness measurement methods based on optical metrology and millimeter-wave radar techniques, Li electromagnetic flowmeters, beam footprint measurements based on residual gas excitation, online neutron detectors such as SPNDs and micro-fission chambers, as well as offline neutron fluence measurements by activation foils or spheres. This contribution provides an overview of these aspects and the associated R&D activities. |
|||
![]() |
Slides WEC1C2 [4.676 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC1C2 | ||
About • | Received ※ 11 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 14 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRA2I5 | Summary of Working Group E: Instrumentation and Intercepting Devices | target, instrumentation, operation, simulation | 677 |
|
|||
The talk concerns the summary of the Working Group E related to Instrumentation and Intercepting Devices | |||
![]() |
Slides FRA2I5 [6.640 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I5 | ||
About • | Received ※ 26 November 2023 — Accepted ※ 29 November 2023 — Issued ※ 13 January 2024 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||