
,

Xobjects and Xdeps: Low-Level Libraries
Empowering Beam Dynamics Simulations

S. Łopaciuk, R. De Maria, G. Iadarola
Beams Department, CERN, Geneva, Switzerland

,

Xsuite – A Beam Dynamics Simulation Package [1]

▶ As a Python package, it is easy to use and flexible.
▶ Fast and extensible, since critical parts are in C.
▶ Multi-threading on CPU (OpenMP [2]), GPU (CUDA [3], OpenCL [4]).
▶ Imports from MAD-X, includes expressions.
Powered by Xobjects and Xdeps.

Xobjects – An In-Memory Serialiser

Writing portable GPU-accelerated code is non-trivial.

▶ With Xobjects, write code once.
▶ Support single- and multi-threading.
▶ OpenMP, CUDA, OpenCL.

Specify portable binary objects for the code.
▶ Accessible from Python and C.
▶ Standard numeric types supported.
▶ Multi-dimensional arrays with any strides, fixed/dynamic shapes.
▶ Compound types: structs, unions, etc.

An Xobject Example

▶ Represent an array of R2 vectors:

1 import xobjects as xo
2
3 class Vectors(xo.Struct):
4 x = xo.Float64[:]
5 y = xo.Float64[:]

▶ Instantiate and access an Xobject from Python:

6 vec = Vectors(x=[1, 2], y=[3, 4])
7 vec.x.to_nparray() #=> np.array([1, 2])

▶ Xobjects will generate a C API, for defining accelerated functions:

1 int64_t Vectors_len_x(Vectors obj);
2 double Vectors_get_x(const Vectors obj, int64_t i0);
3 double Vectors_set_x(
4 const Vectors obj,
5 int64_t i0,
6 double value);
7 // etc...

▶ With the API own functions can be defined, e.g. we can calculate lengths
of element vectors in parallel (ArrayNFloat64 = xo.Float64[:]):

1 /*gpufun*/ void get_lengths(
2 VectorsData v,
3 ArrayNFloat64 result
4) {
5 int64_t n = Vectors_len_x(p);
6 int64_t i = 0;
7 //vectorize_over i n
8 double x, y, l;
9 x = Vectors_get_x(v, i);

10 y = Vectors_get_y(v, i);
11 l = sqrt(x*x + y*y);
12 ArrayNFloat64_set(result, i, l);
13 //end_vectorize
14 }

▶ The decorations tell Xobjects how to parallelise the code.

Use in Particle Tracking

▶ Non-collective line elements have parallelisable tracking functions.
▶ Track sections of the beam line in parallel, or in sequence, as needed.
▶ Portability: data can easilymove between CPU and GPU contexts.
▶ Creating own elements is as simple as subclassing, no knowledge of

internals needed!

Xdeps – A Data Dependency Manager and Optimiser

Implement MAD-X deferred expressions (a := b) in Xsuite.

▶ Declare variables and their dependencies.
▶ Keep values updated based on the dependencies.

An optimiser module used for optics matching.

Design

Xdeps can be used to update any Python object. Key concepts:

▶ Manager – register external objects, orchestrate actions.
▶ Task – describes an action that modifies the values of targets

according to a set of dependencies, and potentially its internal state.
▶ Expression – represents a generic Python expression between

different values. Can define a task when an expression of references is
assigned to another reference.

An Xdeps Example

▶ Set-up: convert Cartesian to planar coordinates.

1 import xdeps as xd, math
2 from types import SimpleNamespace
3
4 pt = SimpleNamespace(x=1, y=1)
5
6 # Set up manager and reference
7 mgr = xd.Manager()
8 pt_ = mgr.ref(pt, ’pt’)
9 math_ = mgr.ref(math, ’math’)

10
11 # Define expression-based tasks
12 pt_.r = math_.sqrt(pt_.x**2 + pt_.y**2)
13 pt_.th = math_.atan2(pt_.y, pt_.x)

▶ Updating x recomputes r and θ:

14 pt_.x = 0
15 print(pt.x, pt.r, pt.th) #=> (0, 1.0, pi/2)

pt.r pt.r
pt.y

pt.th

math.sqrt

pt.x
pt.th

math.atan2

Figure 1: The graph of expressions (boxes)
which are dependencies and targets of tasks
(circles). Can be plotted with
mgr.plot_deps().

An Optimiser Suited for Fine-Tuning

▶ Tried-and-tested Jacobian optimiser of MAD-X [5].
▶ To start, specify target conditions, tolerances, weights, and

parameters to vary; defaults can be given.
▶ Match typically against Twiss, but any observable can be chosen.
▶ A summary of the match results can be printed, and a log of the

iteration steps is available.
▶ The match state can be rolled back, and targets or parameters can be

enabled or disabled.
▶ Single steps of the match can be executed, if necessary.

References
[1] G. Iadarola, et al., Xsuite: An Integrated Beam Physics Simulation Framework. Proceedings of the 68th ICFA ABDW on

High-Intensity and High-Brightness Hadron Beams, Geneva, Switzerland, 2023.

[2] L. Dagum and R. Menon, OpenMP: An Industry Standard API for Shared-Memory Programming. IEEE Computational Science
and Engineering, 5(1):pp. 46–55, 1998.

[3] J. Nickolls, et al., Scalable Parallel Programming with CUDA. ACM SIGGRAPH 2008 Classes, pp. 1–14, ACM, Los Angeles
California, 2008.

[4] J. E. Stone, D. Gohara, and G. Shi, OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems.
Computing in Science & Engineering, 12(3):pp. 66–73, 2010.

[5] R. de Maria, F. Schmidt, and P. K. Skowronski, Advances in Matching with MAD-X. Proceedings of ICAP, pp. 213–215, 2006.

xsuite.web.cern.ch 9−13 October 2023 szymon.lopaciuk@cern.ch

http://xsuite.web.cern.ch
mailto:szymon.lopaciuk@cern.ch

