
Xobjects AND Xdeps: LOW-LEVEL LIBRARIES
EMPOWERING BEAM DYNAMICS SIMULATIONS
S. Łopaciuk∗, R. De Maria, G. Iadarola, CERN, Geneva, Switzerland

Abstract
Xobjects and Xdeps are Python libraries included in the

Xsuite beam dynamics simulation software package. These
libraries are crucial to achieving two of the main goals of
Xsuite: speed and ease of use. Xobjects allows users to run
simulations on various hardware in a platform-agnostic way:
with little user intervention single- and multi-threading is
supported as well as GPU computations using both CUDA
and OpenCL. Xdeps provides support for deferred expres-
sions in Xsuite. Relations among simulation parameters
and functions driving properties of lattice elements can be
defined or indeed imported from other tools such as MAD-X
and then easily updated before or during the simulation.

INTRODUCTION
Xsuite [1, 2] is a relatively recent collection of tools for

conducting beam dynamics simulations in particle accel-
erators. The main focus in the development of Xsuite has
been to create a versatile tool allowing the users to easily,
and with high performance, conduct particle tracking simu-
lations. Xsuite’s ease of use comes from the fact that it is
a framework that can be interfaced with in Python 3, and,
optionally, C. The former of the two languages is regarded
as particularly user-friendly and already well-known in the
community, while the latter is used for writing parts of Xsuite
where performance is critical. Xsuite aims to be performant
by relying on hardware-accelerated computation contexts
(GPU and CPU multi-threading), which is complemented
by the ease of set-up of a simulation: e. g. an existing lattice
model defined in MAD-X can often be directly imported
into Xsuite.

A particle accelerator lattice model consists of a series
of beam elements (collectively referred to as a ‘line’), each
of which abstracts a real-life machine element. The pa-
rameters of each of the elements (e. g. the strength of a
magnet) can depend on various factors, and can be driven
by hyper-parameters of the simulation (as an example of a
hyper-parameter consider the crossing angle of two beams
in a collider); these hyper-parameters are often referred to
as ‘knobs’. The relationships between all of the parameters
are preserved in Xsuite thanks to the Xdeps package. With
Xdeps the user can inspect the simulation parameters, as
well as efficiently change them before or during a simulation.
Simulation runs are themselves enabled by the Xobjects pack-
age which is responsible for memory management, tracking
code generation and its execution regardless of the chosen
computation context.

In this paper we explore these two packages to give a more
in-depth overview of their design and capabilities.
∗ szymon.lopaciuk@cern.ch

XOBJECTS
Beam elements can be naturally divided into two cate-

gories: non-collective, where the computation of the new
coordinates of the tracked particles depend solely on its previ-
ous coordinates and the element itself, and collective, where
the computed coordinates are linked to the coordinates of
other particles in the bunch. Tracking a bunch through a
non-collective element can be easily accelerated through the
application of parallelisation: for every particle the same
computation is performed independently.

Parallelisation can be achieved through CPU or GPU-
based multi-threading; however, the development of portable
parallelisable code is non-trivial, as there are currently dif-
ferent, sometimes competing, technologies, while hardware
vendors tend to support some, but not all of them. In addition
to the conventional serial CPU execution context, Xobjects
aids in writing procedures that simultaneously support CPU-
based multi-threading through OpenMP [3], as well as GPU
platforms compatible with CUDA [4] or OpenCL [5].

Universal API
In essence, Xobjects provides a simple object-oriented

programming interface which allows for defining binary ob-
jects in Python, and for defining their methods in an extended
C syntax. Xobjects comes with a set of built-in types:

• the standard collection of integer types (signed and
unsigned; 8, 16, 32, and 64 bit),

• floating-point types (32 and 64 bit real; 64 and 128 bit
complex),

• multi-dimensional array types (fixed and dynamic
shape; support for arbitrary strides),

• structure types, union types, references, strings.

For any compound type (i. e. structure or array) Xob-
jects can generate a C API that can be used to interact
with the ‘Xobject’ from a C ‘method’. Consider the follow-
ing example of a structure representing an array of vectors
(xo.Float64[:] is an dynamic-length array of double-
precision real numbers):

1 import xobjects as xo
2 class Vectors(xo.Struct):
3 x = xo.Float64[:]
4 y = xo.Float64[:]

Xobjects can be used to automatically generate methods
for getting the size of the arrays comprising our object, as
well as getters and setters for their individual elements:

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-THBP32

Beam Dynamics in Rings

THBP32

543

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

1 int64_t Vectors_len_x(Vectors obj);
2 double Vectors_get_x(
3 const Vectors obj,
4 int64_t i0);
5 double Vectors_set_x(
6 const Vectors obj,
7 int64_t i0,
8 double value);

With these functions, we can now, for example, write
a parallel procedure to calculate all the individual vec-
tor lengths and store them in an Xobjects array (the type
ArrayNFloat64 used in the example below is the C equiv-
alent of the Xobjects type xo.Float64[:]):

1 /*gpufun*/ void get_lengths(
2 VectorsData v,
3 ArrayNFloat64 result
4) {
5 int64_t n = Vectors_len_x(p);
6 int64_t i = 0;
7 //vectorize_over i n
8 double x, y, l;
9 x = Vectors_get_x(v, i);

10 y = Vectors_get_y(v, i);
11 l = sqrt(x*x + y*y);
12 ArrayNFloat64_set(result, i, l);
13 //end_vectorize
14 }

The implementation of get_lengths need only
to be written once: due to the special annotation
//vectorize_over, Xobjects can generate code that is
compatible with serial execution, OpenMP, CUDA, and
OpenCL as needed. If a multi-threaded context (either
CPU or GPU) is chosen any code appearing between
//vectorize_over i n and //end_vectorize will
run on its own 𝑖-th among 𝑛 threads; otherwise, Xobjects
will simply insert a for loop. In this case, the compilation
would be performed at runtime, however Xsuite also makes
it possible to prebuild and store common tracking kernels.

In-Memory Serialisation
Not only is the API used to interact with Xobjects context-

agnosticly, the same is true of the memory layout of the
different types: an xo.Struct with a set of fields will be
the same, no matter if it is on the CUDA context or CPU.
In particular, the powerful array type of Xobjects is fully
compatible with NumPy [6] arrays, and on CPU contexts
it is in fact a wrapper around them. The custom striding
that can be defined on arrays can be particularly helpful if
interfacing with other Fortran-based code is desired.

On the GPU contexts Xobjects relies on the libraries
CuPy [7] and PyOpenCL [8], which are Pythonic wrappers
around CUDA and OpenCL, respectively. Each of these
libraries provides an array interface analogous to the one
provided by NumPy, which means that interacting with ar-
rays on different context in Python is also largely transparent.

Besides being able to rely on out-of-the box solutions
for the array interface, the more obvious benefit of the bi-
nary compatibility of Xobjects on different contexts is their
portability. Whenever a certain computation is faster on a
certain context (e. g. a non-collective tracking on GPU), it

is trivial to move the data buffer containing the Xobjects to
the other context; when a further computation benefits from
a standard CPU context (e. g. due to collective effects, or a
non-parallelisable algorithm) the data can be moved again.

Application in Xsuite
The above-described parts all come together in the track-

ing package of Xsuite: Xtrack. Beam elements are imple-
mented as Xobjects structures, and the same is true for the
particle ensemble object. Each element comes with a C
tracking procedure (or Python, if performance is not key).
Whenever possible the tracking is performed using a com-
piled kernel on the target context, and otherwise the context
is changed to the CPU where a serial tracking function is
used. Due to the common Xobjects API it is easy to imple-
ment one’s own beam element: all that is needed to extend
the built-in behaviour of Xtrack is a set of fields represent-
ing the parameters of the element and a tracking function
implementation.

XDEPS
Users of the particle accelerator design program

MAD-X [9] are certainly accustomed to the concept of de-
ferred expressions. In MAD-X there are two types of as-
signments: immediate and deferred. When defining a value
using the first kind of assignment the expression on the right-
hand side of the equality sign is immediately evaluated and
assigned to a parameter or variable. A value defined with
the second kind of assignment is re-evaluated whenever any
of the variables appearing in the expression change. As
outlined in the introduction, this mechanism is useful when
defining low-level lattice properties using higher-level pa-
rameters that are subject to change. Xdeps is the package
implementing this functionality in Xsuite.

Design
While an internal part of MAD-X, the way deferred ex-

pressions are implemented in the Xdeps package is com-
pletely agnostic to the environment in which they are used.
Xdeps can be employed to update properties of any Python
object, which makes it both versatile and easier to maintain.

There are three key concepts in the design of Xdeps:

Manager A manager registers external Python objects with
Xdeps and orchestrates the actions performed by Xdeps.

Task A task describes an action that modifies the values of
a set of references (targets) depending on the values
stored in another set of references (dependencies) and
potentially its internal state.

Expression An expression represents, and can be built by,
a generic Python expression, which can contain values,
containers, and other expressions. It can represent refer-
ences to slots inside containers to describe targets and
dependencies of tasks, can trigger updates when values
are set into it, and can define a task when an expression
of references is assigned to another reference.

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-THBP32

THBP32

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

544 Beam Dynamics in Rings

An Xdeps manager internally holds the graph of the re-
lationships between references and tasks, which allows for
fast updates of values, as well as introspection and code
generation.

An Example
To visualise the preceding points, we set up the following

example, also shown in Fig. 1: we have a namespace con-
taining a pair of Cartesian coordinates, 𝑥 and 𝑦, and we will
use Xdeps to add a pair of planar coordinates, 𝑟 and 𝜃, that
will be kept up to date whenever 𝑥 or 𝑦 is changed.

1 import xdeps as xd, math
2 from types import SimpleNamespace
3

4 pt = SimpleNamespace(x=1, y=1)
5

6 # Set up manager and reference
7 mgr = xd.Manager()
8 pt_ = mgr.ref(pt, ’pt’)
9 math_ = mgr.ref(math, ’math’)

10

11 # Define expression-based tasks
12 pt_.r = math_.sqrt(pt_.x**2 + pt_.y**2)
13 pt_.th = math_.atan2(pt_.y, pt_.x)
14

15 # Change x
16 pt_.x = 0
17

18 # Will now return 0, 1.0 and pi/2:
19 print(pt.x, pt.r, pt.th)

pt.r pt.r
pt.y

pt.th

math.sqrt

pt.x
pt.th

math.atan2

Figure 1: The graph of expressions (boxes) which are de-
pendencies and targets of tasks (circles). The plot can be
generated by Xdeps with mgr.plot_deps().

In the above example we first set up two reference objects
to serve as proxies to accessing the underlying Python ob-
jects. The first one, pt_, is for our data contained in the
namespace pt. From now on, any change we wish to make
to pt should be done through pt_: this is to ensure that
Xdeps is aware of changes, and can execute the right actions.
Since we also need mathematical functions, we create a refer-
ence to the math module (otherwise, writing sqrt(pt_.x)
throws an error, as pt_.x is a reference object, not a num-
ber). A user can also implement their own functions as well:
currently built into Xdeps (in the functions module) is a
linear interpolator function (it can be given a table of (𝑥, 𝑦)
values) that can serve as a template for implementing more.

Importing from MAD-X
While the example in the previous section is a helpful

demonstration of the basic features of Xdeps, the main inter-
est comes from the ability of importing the expressions from
existing models defined in MAD-X: this is accomplished
in the madxutils module of Xdeps. In said module we
have the formal grammar of MAD-X deferred expressions,
which is used to generate a parser of these expressions using
Lark [10]. The parser is then used to read in the deferred
expression, building the graph of tasks and references in a
manner similar to the one described above.

The Optimiser
Xdeps also hosts the optimiser module used by Xsuite

for its optics matching functionality. At its core it uses the
same Jacobian optimisation algorithm as the one tried and
tested in MAD-X [11], but its user interface makes it easier
to exercise fine-tuned control over the matching process.

To begin, the target conditions of the match need to be
specified, together with their tolerances and weights, as well
as the parameters which should be varied, together with
their limits, weights, and the desired initial step size. The
vary defaults can also be specified on the line in advance,
to avoid duplication. By default, the match is performed
against the results of a twiss, however any action returning
some observables to optimise on can be specified.

Unless otherwise specified, the match will be performed
and its results applied to the line, as long as the solution
can be found within the specified tolerances. To help intro-
spection, both the tolerance check, and the update of the
parameters in the line can be overridden. The summary of
the match can be printed (in a human-readable table also
implemented in Xdeps) to see exactly how far off the re-
sults are from the targets, and similarly, a log of the match
can be viewed to see all the steps of the iteration up to that
point. The match state can be rolled-back to a previous point
in history, and certain targets or parameters to vary can be
switched on or off; a single step of the match can also be
performed if needed.

CONCLUSION
Xobjects and Xdeps are two vital packages that are part

of the Xsuite beam dynamics simulation toolkit.
Xobjects provides an abstract interface to interacting with

beam elements and their tracking code, regardless of the
execution context on which the simulation is run, be it single-
or multi-threaded, CPU or GPU.

Xdeps is the deferred expressions engine behind Xsuite,
which enables parametrisation of accelerator lattices de-
signed in and imported from MAD-X. It also hosts the pow-
erful matching optimiser used in Xsuite, which allows for a
high degree of fine-tuning and introspection to the matching
procedure.

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-THBP32

Beam Dynamics in Rings

THBP32

545

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

REFERENCES
[1] Xsuite Documentation, CERN, Geneva, Switzerland, 2023.
https://xsuite.readthedocs.io/en/latest/

[2] G. Iadarola et al., “Xsuite: An integrated beam physics simu-
lation framework,” presented at HB’23, Geneva, Switzerland,
Oct. 2023, paper TUA2I1, these proceedings.

[3] L. Dagum and R. Menon, “OpenMP: An Industry Standard
API for Shared-Memory Programming,” IEEE Comput. Sci.
Eng., vol. 5, no. 1, pp. 46–55, 1998.
doi:10.1109/99.660313

[4] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scal-
able parallel programming with cuda,” in Proc. ACM SIG-
GRAPH’08, Los Angeles, CA, USA, Aug. 2008, p. 16.
doi:10.1145/1401132.1401152

[5] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Sys-
tems,” Comput. Sci. Eng., vol. 12, no. 3, pp. 66–73, 2010.
doi:10.1109/MCSE.2010.69

[6] C. R. Harris et al., “Array programming with NumPy,” Na-
ture, vol. 585, no. 7825, pp. 357–362, 2020.
doi:10.1038/s41586-020-2649-2

[7] R. Okuta, Y. Unno, D. Nishino, S. Hido, and C. Loomis,
“CuPy: A NumPy-Compatible library for NVIDIA GPU cal-
culations,” in Proc. NIPS’17, Long Beach, CA, USA, Dec.
2017. http://learningsys.org/nips17/assets/
papers/paper_16.pdf

[8] A. Klöckner et al., PyOpenCL, version v2022.1.3, Zenodo,
2022. doi:10.5281/ZENODO.6533956

[9] L. Deniau, H. Grote, G. Roy, and F. Schmidt, The MAD-X
Program (Methodical Accelerator Design). User’s Reference
Manual, CERN, Geneva, Switzerland, v5.08.01, 2022.
https://mad.web.cern.ch/mad/webguide/manual.
html

[10] E. Shinan et al., Lark – a parsing toolkit for Python, 2017.
https://github.com/lark-parser/lark

[11] R. de Maria, F. Schmidt, and P. K. Skowronski, “Advances
in Matching with MAD-X.,” in Proc. ICAP’06, Chamonix,
Switzerland, Oct. 2006, pp. 213–215. https://jacow.
org/icap06/papers/WEPPP14.pdf

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-THBP32

THBP32

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

546 Beam Dynamics in Rings

