

Resonance Extraction Research Based on China Spallation Neutron Source

An Yuwen[#], <u>Yuan Yaoshuo</u>, Huang Liangsheng, Li Zhiping, Xu Shouyan, Han Yanliang, Wang Sheng Special Thanks to Deng Changdong, Han Wenjie, Zhang Wenqing

HB2023, 12th Oct, 2023

anyw@ihep.ac.cn

Motivation:

- CSNS-I has achieved its design goal 100kW in 2020
- ➤ The beam power of the CSNS is steady increased, and will reach 500kW at CSNS II
- > Besides neutron scattering, **photon radiography** is also an exciting application
- ➢ At least 20 frames@10us is required
- > At least 10^{10} particles per frame, about 0.03% extraction rate per turn

Outline:

- > Typical beam parameters
- Simulation of the 3rd order resonance extraction
- > Parameters of the skew quadrupoles, septum and RF kicker
- Conclusion and outlook

China Spallation Neutron Source (CSNS-RCS): Overview

Time structure of extraction beam in the RCS:

- ➤ RF Freq. 1.02~2.44MHz 978~409ns
- ➤ Bunch Length 489ns~65ns
- ➢ 818ns corresponding to 227.92m
- 20 turns extraction can meet the requirements 20 frames@10us;
 10¹⁰ particles per bunch

Basics of the 3rd order resonance extraction:

 $|\vec{Y}_{UFP}| = 8\pi |\frac{Q_r - Q_p}{S_v}|$ $Q_p \equiv Q_m + \xi \delta \quad \text{on-axis tune of the particles}$ $S_n = \frac{1}{2}\beta_{x,n}^{3/2}(k_2L)_n \quad \text{normalized strength of skew sext.}$ $S_v e^{3i\psi_v} = \sum_n S_n e^{3i\psi_n} \text{ virtual strength of skew sext.}$ $A_{stable} = \frac{\sqrt{27}}{4} |\vec{Y}_{UFP}|, \quad \text{stable phase space area}$

Extraction mode for beam supply:

- The beam is deflected about 20mrad to enter Lambertson at vertical plane by 8 kickers in beam commissioning
- The 8 kickers is shut down in the proton radiography mode
- A magnetic septum with 20mrad is planed in proton radiography mode and will be removed in beam commissioning mode
- Necessary beam control and deflection in both modes, optimal performance and functionality for each specific operation.

Two extraction mode

- Beam commissioning for 500kW
- Radiography mode

Preliminary design of the septum:

The design of two septa is superior to that of a single septum magnet.

	Parameters	SEP1	SEP2
	Field	0.1T	0.3T
	Length	1m	0.5m
~	Thickness	1.5mm	5mm
	Good Field Region	100mm*40 mm	100mm*50 mm
46.35 0.0	Leak Field	<1%	<1%
	Current density	66A/m ²	62.5A/m ²
	Inductance	12.8uH	5.56uH

41.35 0.0

The Leak field of the 2 septa is under 1%

Simulation Parameters:

- initial particle distribution is from PyOrbit
 - painting injection
 - Dual harmonic cavities
 - Injection energy is 300MeV
 - tracking turn is 22000
 - Considering space charge effect
- Optimization of beam resonance extraction by removing the central beam
- Tracking about 1000 turns by tuning septum ,skew sextupole, Quadrupole, RF Kicker

Simulation Result:

0_0

200

400

Turn/times

600

800

1000

By tuning skew sextupole&Quad, the extraction rate can exceed 0.03% per turn

Parameters of skew sextupole and RF kicker

devices	parameters	values
skew sextupole	Length (m)	1
	Strength (T/m*m)	80
	Rate of change (T/(m*m*us))	0.1
septum	Central Field (T)	0.1
	Length(m)	1
	Thickness(mm)	1.5
	Gap(mm)	40
	Leak Field	< 0.01
RF kicker	Max. kick angle (urad)	4.0
	Frequency of RF kicker(MHz)	0.83

Conclusion:

- Proton radiography is a perspective application for CSNSII
- 20 frames @10us, particles exceeding 10¹⁰ is a application mode, requiring 0.03% extraction rate for CSNS-RCS at 500kW
- > A new septum is designed to deflected extracted beam before Lambertson
- By tuning skew sextupoles , quadrupoles (tunes), and RF kicker, the extraction rate meet the requirement

Challenges:

- The particles may not be very uniform during 20 frames
- > 0.03% extraction rate seems high for 3rd order resonance extraction

Thanks for your attention