
EVALUATING PyORBIT AS UNIFIED SIMULATION TOOL FOR
BEAM-DYNAMICS MODELING OF THE ESS LINAC

C. Zlatanov, J. F. Esteban Müller, Y. Levinsen, N. Milas,
European Spallation Source ERIC, Lund, Sweden

A. Zhukov, A. P. Shishlo, ORNL, Oak Ridge, TN, USA

Abstract
The design of the ESS proton linac was supported by

the simulation code TraceWin, a closed-source commercial
software for accurate multiparticle simulations. Conversely,
high-level physics applications used for beam commission-
ing and machine tuning rely on the Open XAL framework
and its online model for fast envelope simulations. In this
paper, we evaluate PyORBIT for both online modeling of the
linac for machine commissioning and tuning as well as for
more accurate offline simulations for beam-dynamics stud-
ies. We present the modifications done to the code to adapt it
to this use case, namely porting the code to Python 3, adding
an envelope tracker, and integrating with the EPICS con-
trol systems. Finally, we show the results of benchmarking
PyORBIT against our current modeling tools.

INTRODUCTION
At ESS, we mainly rely on two codes for beam-dynamics

simulations: the Open XAL [1] online model, an envelope
code; and TraceWin [2], a powerful and feature-rich com-
mercial code for both envelope and multiparticle simula-
tions. This setup has worked fine, but we identified some
weak points: we need to maintain two different lattice files,
TraceWin is a closed-source code therefore we can’t investi-
gate implementation details or extend it, and Open XAL is
written in Java while Python remains the favorite language
among accelerator physicists.

PyORBIT [3] is an open-source Python code for multipar-
ticle beam-dynamics simulations in linacs and synchrotrons
that is very rich in features. It implements three different
algorithms for space charge, a numerical integrator for track-
ing particles under arbitrary electromagnetic fields, routines
for beam-coupling impedance and beam-matter interaction,
as well as MPI integration for parallel computing.

Being an open-source project, we can extend PyORBIT
and adapt it to our needs, for instance, by integrating it with
our control system, or by adding an envelope tracker. For
this reason, in this paper we are evaluating the code to use it
for all beam-dynamics studies at ESS.

Furthermore, at ESS we are also involved in other projects
that would require a synchrotron, for example ESSnuSB [4]
and the muon collider [5]. In both cases, we are evaluating
software tools for the design and simulation of synchrotrons
and transfer lines, which PyORBIT can do.

PORTING CODE TO PYTHON 3
At the time when we started considering using PyORBIT

at ESS, the latest version only supported Python 2.7 or older,

which has been deprecated since 2020. For that reason,
we focused the first efforts on porting the code to make it
compatible with the latest releases of Python 3.

At the same time, we improved the build mechanism to
produce a Python package that can be installed using the
pip command, which should simplify installation and usage
of the tool. In previous versions of PyORBIT, users had to
build a custom Python interpreter that automatically loaded
the PyORBIT libraries as built-in Python modules.

ESS LATTICE DEFINITION
PyORBIT supports several formats for describing the ac-

celerator lattice, such as MAD-X [6], SAD [7], and a custom
XML format.

At ESS, we are exploring the option to generate our lattice
directly in Python. We defined a set of helper functions that
simplify instantiating the sequences and elements in the
lattice, as well as a function to pre-process the lattice to add
the drift elements.

On Listing 1 we show a basic example of how we define
a lattice in Python. In this example, we create a lattice with
one section that contains one RF cavity with a single gap
and a quadrupole magnet.

Listing 1: This is a snippet showing an example of a lattice
defined in Python. In the snippet, we instantiate a Lattice
object and add to it a sequence containing an RF cavity with
one RF gap and a quadrupole magnet.

1 from typing import List
2 from orbit.lattice import AccLattice , AccNode
3 from orbit.py_linac.lattice import

LinacAccLattice , Sequence
4 import lattice_builder as builder
5

6 # Instantiating a Lattice element
7 lattice = LinacAccLattice("ESS Lattice")
8 frequency = 352.21e6
9 maxDriftLength = 0.005

10

11 accSeqs: List[Sequence] = []
12

13 # Adding the DTL sequence
14 dtl_seq = builder.addSequence(
15 lattice=lattice ,
16 accSeqs=accSeqs ,
17 name="DTL",
18 length=33.1528945,
19 bpmFrequency=7.0442e+08,
20 start_position=0)
21

22 # Adding a cavity element
23 dtl_tank_1 = builder.addCavity(
24 sequence=dtl_seq ,
25 name="DTL -010:EMR-Cav-001",

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-TUC2C2

TUC2C2

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

102 Beam Dynamics in Linacs



26 amplitude=0.003,
27 phase=-35.0,
28 frequency=frequency ,
29 position=0
30 )
31

32 # Adding a quadrupole magnet
33 builder.addQuad(
34 sequence=dtl_seq ,
35 name="DTL -010:BMD-PMQ-001",
36 length=0.05,
37 field=-59.9444,
38 aperture=0.02,
39 aprt_type=1,
40 pos=0.025,
41 maxDriftLength=maxDriftLength)
42

43 # Adding an RF gap to a cavity element
44 ttfs_element = builder.TTFs(
45 beta_max=0.99,
46 beta_min=1e-06,
47 polyT=[
48 1.07731,
49 -0.00257565,
50 -1.17398e-05])
51

52 builder.addRFGap(
53 sequence=dtl_seq ,
54 cavity=dtl_tank_1 ,
55 name="DTL -010:EMR-Cav -001:G1",
56 amplitude_factor=0.781302,
57 length=0.0752368,
58 mode=0,
59 EzFile="?",
60 aperture=0.02,
61 aprt_type=1,
62 pos=0.0626084,
63 ttf=0.780607,
64 ttfs_element=ttfs_element)
65

66 # Performs sanity checks and add drifts
67 builder.processNodes(
68 lattice=lattice ,
69 sequence=dtl_seq ,
70 thinNodes=thinNodes ,
71 maxDriftLength=maxDriftLength)
72

73 lattice.initialize()

The advantages of this option are:

• no need to learn a new syntax.

• possibility to programmatically describe machine sec-
tions, e.g., group periodic sections, auto-generate signal
names for integration with the control system, etc.

• taking advantage of IDE features such as auto-
completion, syntax highlighting, error detection, and
display documentation.

• deployment can be done by installing a Python package
using pip.

The main disadvantages we found for this option are that
modifying a lattice adds the extra step of reinstalling the
pip package and that switching between different lattices at
runtime becomes more cumbersome.

Benchmark against TraceWin
PyORBIT is a mature code that has¨ been successfully

used to simulate different machines. Nevertheless, we de-
cided to perform a benchmark against our reference multi-
particle simulations, done using TraceWin, for validation
purposes.

We have tested PyORBIT for the section of the ESS linac
that has been installed and commissioned with beam until
now, i.e., up to the fourth DTL tank. Figure 1 shows the
values for the rms envelope computed using PyORBIT and
TraceWin, using similar parameters for the space-charge
solver. The initial distribution was also the same. The enve-
lope in the longitudinal plane is shown in Fig. 2.

In both cases, we see that the results agree very well.
There are small differences in the transverse plane at the end
of the section and some oscillations in the longitudinal plane
in the results from PyORBIT. These differences are probably
due to the different approaches for meshing the bunch for
the space-charge calculation. In TraceWin, the mesh size
is calculated using the rms sizes, while in PyORBIT it con-
siders all the particles. The distribution that we use has few
particles that drift away before they are lost and make the
grid size larger in PyORBIT as compared to TraceWin. In
addition, we used different strategies to remove lost particles.

ENVELOPE TRACKER
PyORBIT implements a multiparticle tracker that enables

precise beam-dynamics simulations. However, precision
comes at a computational cost that some control room appli-
cations don’t need, since they don’t require such accuracy
and would benefit from faster simulations. Examples are ap-
plications for trajectory correction or phase scan, that don’t
need even to compute the space-charge effect.

For this reason, we are implementing an envelope tracker
based on a first-order matrix model of the machine and a
linear space-charge model. This is a work in progress and so
far we implemented the drifts, quadrupole magnets, and RF
cavities. This model will be enough to be used by a phase
scan application. For the trajectory correction application,
we still need to implement bending magnets.

For lattice matching applications we are planning to im-
plement the linear space-charge solver.

Benchmarking the Envelope Solver
The envelope tracker has been benchmarked against Open

XAL and the envelope solver of TraceWin. Results are
shown in Fig. 3. In this case, the results almost perfectly
match one another.

We also measured runtime for this example to be in the
order of 10 ms on a Macbook Pro with an M1 processor.
We expect this time to remain in the order of tens of ms
when the linear space-charge solver is implemented. As
a comparison, running the PyORBIT multiparticle tracker
with 1 million particles, a 5 mm-step for the space-charge
solver, and a 64x64x64 grid, the simulation takes around 4
minutes on the same laptop.

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-TUC2C2

Beam Dynamics in Linacs

TUC2C2

103

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I



Figure 1: Results from multiparticle simulations using PyORBIT (blue) and TraceWin (orange), showing the transverse
beam size (rms) from the MEBT to the fourth DTL tank in the horizontal (top) and vertical (bottom) planes. Simulations
were performed for a 62.5 mA beam using a 3D space-charge solver in both codes. Differences in the vertical plane on the
right side are due to the limited number of points from the TraceWin simulations output.

Figure 2: Results from multiparticle simulations using Py-
ORBIT (blue) and TraceWin (orange), showing the longi-
tudinal beam size from the MEBT to the fourth DTL tank.
Simulations were performed for a 62.5 mA beam using a 3D
space-charge solver in both codes. Oscillations in PyORBIT
results are probably due to a larger grid size in the space-
charge solver due to particles drifting away.

EPICS INTEGRATION

The control system at ESS is based on the EPICS proto-
col [8]. In order to use PyORBIT as an online model for
high-level beam-physics applications, we have developed an
extension that integrates the latest version of EPICS.

The extension is written in Python and it is based on the
p4p module [9]. It is bundled as a Python package that can
be installed using the pip command.

In order to use it, one only needs to add the EPICS PV
names into the lattice, as shown on Listing 2. The pack-
age provides helper functions to programmatically add the
channels to the lattice elements, which enable users to both
read and write directly from and to the devices. It also adds
synchronization methods to the lattice object to read all pa-
rameters from the control system at once.

At the moment of writing this paper, the extension sup-
ports electromagnets and RF cavities. Beam diagnostics will
be added soon. The source code of the pyorbit-epics ex-
tension can be found in https://gitlab.esss.lu.se/
ess-crs/pyorbit-epics.

Listing 2: This snippet shows how EPICS channels can be
attached to lattice elements using the pyorbit-epics extension.

1 # Adding EPICS channels to a quadrupole
magnet

2 channels.addMagnetChannels(
3 node=quad_1,
4 current_channel="MEBT -010:PwrC-PSQV -001:

Cur-R",
5 current_set_channel="MEBT -010:PwrC-PSQV

-001:Cur-S",
6 convFactor=-0.162
7 )
8

9 # Adding EPICS channels to an RF cavity
10 channels.addCavityChannels(
11 node=cavity_1 ,
12 amplitude_channel="MEBT -010:RFS-LLRF -101:

SPRampingA",

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-TUC2C2

TUC2C2

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I

104 Beam Dynamics in Linacs



Figure 3: Results from envelope simulations using PyORBIT (blue), Open XAL (orange), and TraceWin (green), showing
the transverse beam size (rms) from the MEBT to the fourth DTL tank in the horizontal (top) and vertical (bottom) planes.

13 amplitude_set_channel="MEBT -010:RFS-DIG
-101:AI0-SMonAvg -Mag",

14 phase_channel="MEBT -010:RFS-DIG -101:
RFCErrLimSBCmp1",

15 phase_set_channel="MEBT -010:RFS-LLRF -101:
SPRampingPhase")

16

CONCLUSION
The initial evaluation of the PyORBIT code has demon-

strated that the code fulfills our requirement for both accurate
multiparticle simulations and can be extended with an online
model and EPICS integration for control room applications
with a reasonable software development effort.

We have ported the code to Python 3, improved the build
and deployment process, prototyped an envelope tracker,
and integrated it with our EPICS control system.

The code can be found at https://github.com/
PyORBIT-Collaboration/PyORBIT3.

FUTURE STEPS
As shown in this paper, we have done a general verification

of the code, but a more thorough verification of the beam-
dynamics model is needed and planned. The test will include
misalignments and mismatches.

We also plan to complete the EPICS integration and the
envelope model to build the first control room applications.

Another development that is planned to take place in the
near future is the study of GPU acceleration for the multipar-
ticle tracker. If we could reach a speed-up of 2 or 3 orders
of magnitude, we could start using the multiparticle tracker
for the online model.

REFERENCES
[1] Open XAL repository. https://openxal.github.io

[2] D. Uriot, TraceWin. http://irfu.cea.fr/Sacm/
logiciels/index3.php

[3] A. Shishlo, S. Cousineau, J. Holmes, and T. Gorlov, “The par-
ticle accelerator simulation code pyorbit,” Procedia Comput.
Sci., vol. 51, pp. 1272–1281, 2015.

[4] A. Alekou et al., “The European Spallation Source neutrino
Super Beam,” Eur. Phys. J. Spec. Top., vol. 231, pp. 3779–
3955, 2022. doi:10.1140/epjs/s11734-022-00664-w

[5] D. Schulte, “The Muon Collider,” in Proc. Int. Part. Accel.
Conf. ’22, Bangkok, Thailand, May 2022, pp. 821–826.
doi:10.18429/JACoW-IPAC2022-TUIZSP2

[6] MAD-X code website. http://madx.web.cern.ch/mad

[7] SAD code website. https://acc-physics.kek.jp/SAD

[8] EPICS collaboration, The experimental physics and industrial
control system. https://epics-controls.org

[9] M. Davidsaver, P4P repository. https://mdavidsaver.
github.io/p4p

68th Adv. Beam Dyn. Workshop High-Intensity High-Brightness Hadron Beams HB2023, Geneva, Switzerland JACoW Publishing

ISBN: 978-3-95450-253-0 ISSN: 2673-5571 doi:10.18429/JACoW-HB2023-TUC2C2

Beam Dynamics in Linacs

TUC2C2

105

Co
n
te
n
t
fr
o
m

th
is

w
o
rk

m
ay

b
e
u
se
d
u
n
d
er

th
e
te
rm

s
o
f
th
e
CC
-B
Y-
4
.0

li
ce
n
ce

(©
20

23
).
A
n
y
d
is
tr
ib
u
ti
o
n
o
f
th
is

w
o
rk

m
u
st

m
ai
n
ta
in

at
tr
ib
u
ti
o
n
to

th
e
au

th
o
r(
s)
,t
it
le

o
f
th
e
w
o
rk
,p

u
b
li
sh

er
,a

n
d
D
O
I


