Keyword: kicker
Paper Title Other Keywords Page
TUA1C1 Major Longitudinal Impedance Sources in the J-PARC Main Ring impedance, septum, cavity, operation 53
 
  • A. Kobayashi
    KEK, Tokai, Ibaraki, Japan
 
  Beam intensity upgrade is ongoing at the J-PARC main ring. The beam instability is controlled by feedback systems in both longitudinal and transverse directions respectively. However, in recent years, microbunch structures have been observed during debunching, inducing electron cloud and transverse beam instability, which has become a problem. It is essential to identify the cause and take countermeasures. A summary of model and measurement comparisons will be reported for the major impedances RF-cavities, FX-septa, and FX-kickers. Of the five septa, two have been subjected to impedance reduction measures. The remaining three septa are of different types, but similar measures are planning.  
slides icon Slides TUA1C1 [26.758 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA1C1  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA2C2 Recent Advances in the CERN PS Impedance Model and Instability Simulations impedance, simulation, proton, synchrotron 86
 
  • S. Joly
    La Sapienza University of Rome, Rome, Italy
  • G. Iadarola, N. Mounet, B. Salvant, C. Zannini
    CERN, Meyrin, Switzerland
  • M. Migliorati
    INFN-Roma1, Rome, Italy
 
  Transverse instability growth rates in the CERN Proton Synchrotron are studied thanks to the recently updated impedance model of the machine. Using this model, macroparticle tracking simulations were performed with a new method well-suited for the slicing of short wakes, which achieves comparable performance to the originally implemented method while reducing the required number of slices by a factor of 5 to 10. Dedicated beam-based measurement campaigns were carried out to benchmark the impedance model. Until now, the model underestimated instability growth rates at injection energy. Thanks to a recent addition to the impedance model, namely the kicker magnets¿ connecting cables and their external circuits, the simulated instability growth rates are now comparable to the measured ones.  
slides icon Slides TUA2C2 [0.736 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2C2  
About • Received ※ 28 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4I1 A Kicker Impedance Reduction Scheme with Diode Stack and Resistor at the RCS in J-PARC impedance, simulation, emittance, extraction 162
 
  • Y. Shobuda, H. Harada, P.K. Saha, T. Takayanagi, F. Tamura, T. Togashi, Y. Watanabe, K. Yamamoto, M. Yamamoto
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
 
  At the 3-GeV Rapid Cycling Synchrotron (RCS) within the Japan Proton Accelerator Research Complex (J-PARC), kicker impedance causes beam instability. A 1-MW beam with a large emittance can be delivered to the Material and Life Science Experimental Facility (MLF) by suppressing beam instabilities without the need for a transverse feedback system¿simply by turning off the sextuple magnets. However, we require other high-intensity and high-quality beams with smaller emittances for the Main Ring (MR). To address this, we proposed a scheme for suppressing the kicker impedance using a diode stack and resistors, which effectively reduces beam instability. Importantly, these devices have a negligible effect on the extracted beam from the RCS.  
slides icon Slides TUC4I1 [2.713 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4I1  
About • Received ※ 26 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 10 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4I2 Development of an Impedance Model for the ISIS Synchrotron and Predictions for the Head-Tail Instability impedance, simulation, synchrotron, coupling 170
 
  • D.W. Posthuma de Boer, B.A. Orton, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is a pulsed, spallation neutron and muon source at the Rutherford Appleton Laboratory in the UK. The rapid cycling synchrotron which drives the facility accelerates 3·1013 protons-per-pulse from 70 to 800 MeV at 50 Hz, and delivers a mean beam power of 0.2 MW to two target stations. Beam-loss mechanisms must be understood to optimise performance and minimise equipment activation; and to develop mitigation methods for future operations and new accelerators. Substantial beam-losses are driven by a vertical head-tail instability, which has also limited beam intensity. Beam-based impedance measurements suggest the instability is driven by a low-frequency narrowband impedance, but its physical origin remains unknown. More generally, research into the nature of the instability is hindered without a detailed transverse impedance model. This paper presents a survey of vertical impedance estimates for ISIS equipment, using analytical methods, low frequency CST simulations and lab-based coil measurements. The final impedance estimate is then used as an input to a new linearised Vlasov solver, and predicted growth rates compared with previously obtained experimental results.  
slides icon Slides TUC4I2 [4.374 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4I2  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4C1 Beam Coupling Impedance of the Main Extraction Kickers in the CERN PS impedance, coupling, simulation, extraction 178
 
  • M. Neroni, M.J. Barnes, A. Lasheen, C. Vollinger
    CERN, Meyrin, Switzerland
  • A. Mostacci
    Sapienza University of Rome, Rome, Italy
  • B.K. Popovic
    ANL, Lemont, Illinois, USA
 
  In view of the High Luminosity (HL) upgrade of the LHC, the beam intensity must be doubled in the injector chain. To perform reliable beam dynamics simulations, the beam coupling impedance in the injectors, such as the Proton Synchrotron (PS), must be followed closely by including all contributing elements into the impedance model. The existing kicker magnets of the PS had been optimized for large kick strength and short rise/fall times, but not necessarily to minimise beam coupling impedance. Hence, unwanted beam induced voltage can build up in their electrical circuits, with an impact on the beam. The beam coupling impedances of the two main kicker magnets used for the fast extraction from PS, the KFA71 and KFA79, are extensively characterized in this study. In particular, electromagnetic simulation results for the longitudinal and transverse coupling impedance are shown. The critical impedance contributions are identified, and their effect on beam stability is discussed. Moreover, the impact of the cable terminations on the electromagnetic field pattern and possible mitigation techniques are presented, providing a complete impedance evaluation of the entire kicker installation.  
slides icon Slides TUC4C1 [2.715 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4C1  
About • Received ※ 30 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP02 Resonance Extraction Research Based on China Spallation Neutron Source extraction, sextupole, resonance, lattice 397
 
  • Y.W. An, L. Huang, Z.P. Li, S.Y. Xu, Y.S. Yuan
    IHEP, Beijing, People’s Republic of China
 
  Resonance extraction based on the RCS ring is an important aspect of beam applications. This article proposes a new design of resonance extraction based on the CSNS-RCS ring. By adjusting parameters such as the skew sextupole magnet, beam working point, RF-Kicker, etc., the simulation results from PyOrbit demonstrate the ability to rapidly extract a large number of protons within a few turns.  
slides icon Slides THAFP02 [1.497 MB]  
poster icon Poster THAFP02 [0.960 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP02  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 01 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP03 Measurement of Stability Diagram at IOTA at Fermilab experiment, damping, pick-up, impedance 400
 
  • M.K. Bossard, Y.K. Kim
    University of Chicago, Chicago, Illinois, USA
  • R. Ainsworth, N. Eddy
    Fermilab, Batavia, Illinois, USA
 
  Funding: Fermilab
Nonlinear focusing elements can enhance the stability of particle beams in high-energy colliders by means of Landau Damping, through the tune spread which is introduced. We propose an experiment at Fermilab’s Integrable Optics Test Accelerator (IOTA) to investigate the influence of nonlinear focusing elements on the transverse stability of the beam. In this experiment, we employ an anti-damper, an active transverse feedback system, as a controlled mechanism to induce coherent beam instability. By utilizing the anti-damper, we can examine the impact of the nonlinear focusing element on the beam’s transverse stability. The stability diagram, a tool used to determine the system’s stability, will be measured using a recently demonstrated method at the LHC. This measurement is carried out experimentally by selecting specific threshold gains and measuring them for a range of phases. The stability diagram is represented by gei¿ on the complex plane. The experiment at IOTA adds insight towards the stability diagram measurement method by supplying a reduced machine impedance, to investigate the impedance’s effect on the stability diagram, as well as a larger range of phase measurements.
 
slides icon Slides THAFP03 [1.331 MB]  
poster icon Poster THAFP03 [1.692 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP03  
About • Received ※ 06 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP05 CERN SPS Dilution Kicker Vacuum Pressure Behaviour under Unprecedented Beam Brightness vacuum, operation, brightness, flattop 447
 
  • F.M. Velotti, M.J. Barnes, W. Bartmann, H. Bartosik, E. Carlier, G. Favia, I. Karpov, K.S.B. Li, N. Magnin, L. Mether, V. Senaj, P. Van Trappen, C. Zannini
    CERN, Meyrin, Switzerland
 
  The Super Proton Synchrotron (SPS) is the second largest synchrotron at CERN and produces high-brightness beams for the Large Hadron Collider (LHC). Recently, the dilution kicker (MKDH) of the SPS beam dump system (SBDS) has demonstrated unanticipated behaviour under high beam brightness conditions. During the 2022 and 2023 beam commissioning, the MKDH, which is routinely pulsed at high voltage, was subjected to intensities of up to 288 bunches of 2·1011 protons per bunch and bunch lengths as low as 1.5 ns. Under these conditions, all the SPS kickers and septa exhibited a rapid vacuum pressure rise and a significant temperature increase with the MKDH playing the dominant effect in restricting the maximum line density that can be attained. This paper presents the results of the collected data, emphasizes the dependence on beam parameters, and introduces a probabilistic model to illustrate the effect of MKDH conditioning observed to forecast the pressure behaviour. Finally, potential countermeasures and outlook are discussed.  
poster icon Poster THBP05 [1.913 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP05  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP11 MKP-L Impedance Mitigation and Expectations for MKP-S in the CERN-SPS impedance, coupling, shielding, extraction 466
 
  • C. Zannini, M.J. Barnes, M.S. Beck, M. Díaz Zumel, L. Ducimetière, G. Rumolo, D. Standen, P. Trubacova
    CERN, Meyrin, Switzerland
 
  Beam coupling impedance mitigation is key in preventing intensity limitations due to beam stability issues, heating and sparking. In this framework, a very good example is the optimization of the SPS kickers beam-coupling impedance for beam-induced heating mitigation. After the optimization of the SPS extraction kickers, the SPS injection kickers became the next bottleneck for high intensity operation. This system is composed of three MKP-S tanks and one MKP-L. To accommodate LIU beam intensities, it was necessary to mitigate the beam induced heating of the MKP-L, using a shielding concept briefly reviewed in this paper. Moreover, temperature data from the 2023 run are analyzed to qualify the accuracy of the models and assess the effectiveness of the impedance mitigation. Finally, the expected limitations from the MKP-S, expected to become the new bottleneck in terms of beam induced heating, are discussed.  
poster icon Poster THBP11 [1.655 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP11  
About • Received ※ 29 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP31 Electron Cloud Effects in the CERN Accelerators in Run 3 electron, operation, injection, simulation 538
 
  • L. Mether, H. Bartosik, L. Giacomel, G. Iadarola, S. Johannesson, I. Mases Solé, K. Paraschou, G. Rumolo, L. Sabato, C. Zannini, E. de la Fuente
    CERN, Meyrin, Switzerland
  • S. Johannesson
    EPFL, Lausanne, Switzerland
 
  Several of the machines in the CERN accelerator complex, in particular the Large Hadron Collider (LHC) and the Super Proton Synchrotron (SPS), are prone to the build-up of electron clouds. Electron cloud effects are observed especially when the machines are operated with a 25 ns bunch spacing, which has routinely been used in the LHC since the start of its second operational run in 2015. After the completion of the LHC Injectors Upgrade program during the latest long shutdown period, the machines are currently operated with unprecedented bunch intensity and beam brightness. With the increase in bunch intensity, electron cloud effects have become one of the main performance limitations, as predicted by simulation studies. In this contribution we present the experimental observations of electron cloud effects since 2021 and discuss their implications for the future operation of the complex.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP31  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)