

Beam coupling impedance of the main extraction kickers in the CERN PS

Michela Neroni (RF group) M. J. Barnes, A. Lasheen, A. Mostacci, B. Popovic, C. Vollinger

<u>Acknowledgments</u>: C. Antuono, H. Bursali, H. Damerau, S. Joly, M. Migliorati, B. Salvant, L. Sito, M. Stephen Sullivan, M. Valente Dos Santos, Impedance Working Group and all the BR section at CERN.

Motivations

Upgrade of LHC injectors (**LIU** project) in view of HL-LHC, <u>PS goal</u>: bunch intensity up to 2.6×10^{11} p/b, with 72 bunches.

→ important to remain within a stringent impedance budget.

- To keep **PS impedance model up-to-date**, ensure the use of the most recent geometrical model of each component.
- **Kickers** are the main source of **broadband impedance** in the PS, with unwanted effects, e.g. loss of Landau damping.
- Longitudinal coupled-bunch instabilities were one of the main limitations for reaching higher intensities in the LIU framework.
 - → While the LIU target is reached today, tackling critical impedance sources will provide additional margin.

HB2023

PS fast extraction kickers

KFA71, **KFA79** and **SMH16** involved in the main extraction from PS towards SPS and experimental areas

FA58 **KFA** East hall Booster KFA79 PS CB TT_{2} Inflector zone SMH16 North hall South hall Linac III LEIR Linac IV 100m

Kickers geometry

- Kickers first installed in the **1970s**
- Twelve magnet modules foreseen for extraction, split into two different devices

Model geometry and materials

5

10/10/2023

HB2023

Michela Neroni

Longitudinal impedance

** E. Shaposhnikova, "Longitudinal beam parameters during acceleration in the LHC", Tech. Rep. LHC-PROJECT-NOTE-242, CERN, 2000

Longitudinal impedance

Wakefield simulations: compromise between wakelength and number of mesh-cells

Good resolution in the desired range of frequency
Reasonable computational time

Mitigation strategy – resonance location

10/10/2023

HB2023

Michela Neroni

Transverse impedance

- > Mesh density locally increased in the region of beam and integration path
- Calculations carried out for one offset case:
 - $x_{off} = 6.5 \text{ mm}$
 - $y_{\rm off} = 2.5 \, \rm mm$

small enough to stay in the region where the linear approximation of the wake functions is valid

$$Z_u^{dip/quad} = -\frac{Z_u(\omega) - Z_u^0(\omega)}{u_{s/t}}$$

Transverse dipolar impedance

• Simulation up to 2.5 GHz to include broadband behavior tail

Transverse quadrupolar impedance

10/10/2023

As expected from the theory*, the two quadrupolar components have the same amplitude but opposite sign

Transverse impedance results must be weighted with thee β -functions at the locations of the kickers

Adding cable terminations

KFA71 in the PS tunnel

Adding cable terminations

* L. Sermeus et al., "The kicker systems for the PS Multi-turn Extraction", No. CERN-ATS-2010-140, 2010

Simulating wire measurement

 Frequency domain simulation (FD) to mimic single stretched wire measurements setup → including in the 3D model matching resistors and copper wire

Treating power connectors as **waveguide ports ->** <mark>6 + 2 (kicker input/output) ports component</mark>

2. Combined schematic simulation: lumped element circuit connected to a 3D electromagnetic FD simulation

Three different configurations simulated:

- → Input power connectors always terminated on ideal open transmission line
- Output power connector terminations considered as:
 - a) ideal **open** transmission line
 - b) short circuit
 - c) 15 Ω resistor (actual situation)

Effect of cable terminations

The transmission parameter, S_{21} , is of interest because it directly gives information on the longitudinal beam coupling impedance

Conclusions and Outlook

- The longitudinal and transverse beam coupling impedance results for both PS extraction kickers have been presented and critical resonances were discussed.
- Work on **mitigation solutions** has started tackling the critical impedance peaks.
- The transmission cable terminations highly impacts the beam coupling impedance.
 - Stretched wire measurements on the KFA79, including proper cable terminations, are currently ongoing for a final confirmation of impedance results.
 - The transverse impedance is useful for updating PS transverse impedance model and for investigating transverse instabilities (see also talk by S. Joly, "Recent advances in the CERN PS impedance model and instability simulations", HB2023).
 - Transmission cables with their proper terminations must be included in the simulations and be also part of the measurement setup.

