

# Simulations and measurements of betatron and off-momentum cleaning performance in the energy ramp at the LHC

Natalia Triantafyllou, R. Bruce, M. D'Andrea, K. Dewhurst, B. Lindstrom, D. Mirarchi, S. Redaelli, F. F. Van Der Veken

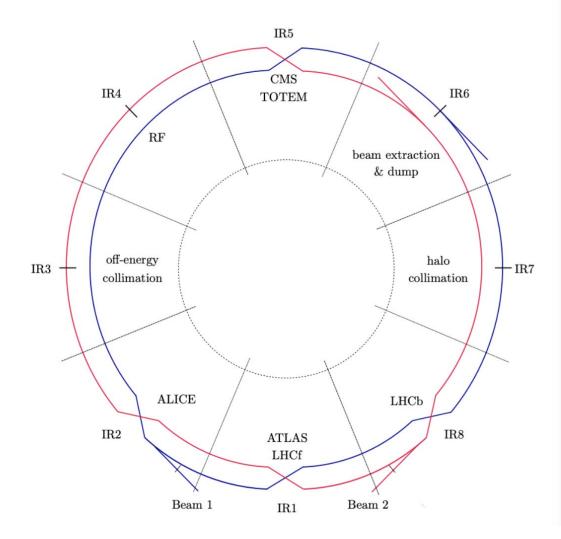
HB 2023 - 11 October 2023

**Contribution WEC3C3** 

- Introduction
- Simulation tools
- Selected results
- Conclusions and future steps



## • Introduction


- Simulation tools
- Selected results
- Conclusions and future steps

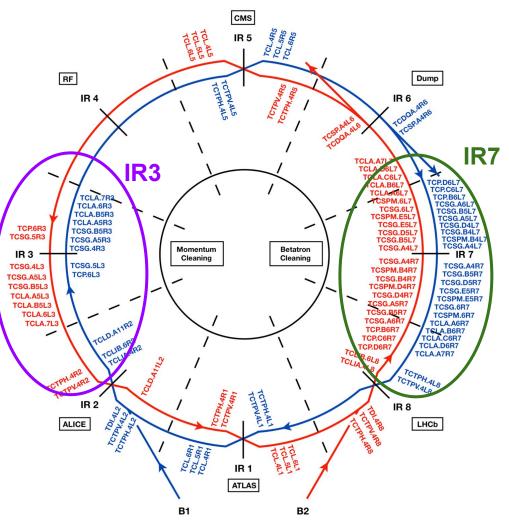


# Large Hadron Collider

- 27 km ring
- Two counter-rotating beams, 450 to 6800 GeV
- Four collision points
- In 2023 over 400 MJ beam energies stored in the machine
- Protection of machine hardware against beam losses
  → Collimation system



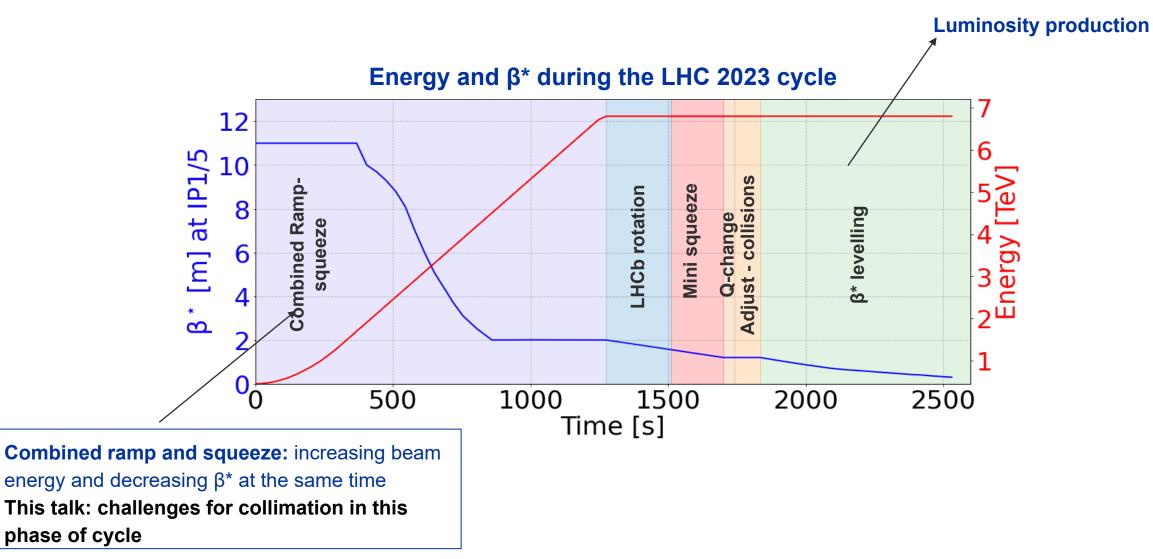



HB-2023



# LHC collimation system

- Remove particles at large betatron / energy offsets from beam
- Multistage collimation system: > 100 collimators around the ring
- Most collimators in IR3 / IR7: momentum / betatron cleaning
- Cleaning inefficiency: particles scattered out of collimators
  lost outside of collimation system
- Most critical: superconducting IR7 dispersion suppressor cleaning inefficiency < 10<sup>-4 (\*)</sup> → Excellent performance
- Must protect at all stages of the cycle






(\*) Normalised to the losses in the collimators.



# LHC operational cycle





# **Motivation**

- Combined ramp / squeeze: challenge for LHC collimation system
- Emittance shrinks in ramp & aperture around collision points shrinks in squeeze: collimators must track both
- Requires excellent **control** & **understanding** of **collimation** system performance
  - Guarantee machine safety throughout the ramp
  - Maximize operational efficiency
- Qualification of cleaning performance in **measurements** is part of **machine commissioning**
- Simulations for performance optimization and issue mitigation: typical for other phases in cycle
- Initiated the **first simulation campaign** of the **cleaning performance** during the **ramp** (this talk):
  - Observable: distribution of losses around the machine, i.e. **loss maps**
  - Tools: **Xsuite** and its collimation package **Xcoll**



### • Introduction

## • Simulation tools

- Selected results
- Conclusions and future steps

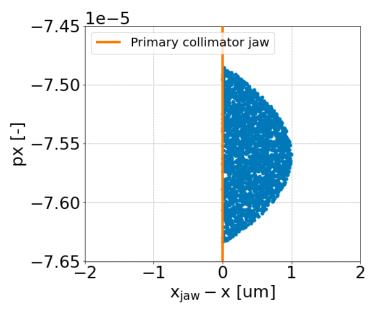


# **Xsuite and Xcoll**



- Xsuite: Python packages for particle simulations, combining functionalities of various tools used previously
- Two most relevant packages for our studies:
  - **Xtrack**: **Symplectic 6D particle tracking** through accelerator elements
    - Possibility to include effects such as synchrotron radiation, impedance, space charge etc
    - Computes optics functions and generates matched particle distributions
  - Xcoll: Simulates particle-matter interaction for collimation studies
    - External engines: Geant4, FLUKA
    - Internal engine: K2 → Everest
- Improved versatility and simplified setup compared to previous tools

G. ladarola et al, TUA211


F. F. Van der Veken et al, THBP13



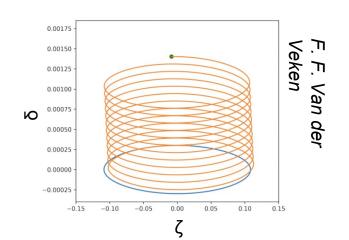
# Simulating betatron cleaning with Xcoll

- Qualification loss map measurements in operation: blowing up emittance with transverse damper
- Simulation approach for a given energy
  - Direct halo sampled at jaw of primary collimator
    - Simplified beam dynamics, no diffusion considered
    - + Very efficient (200 turns)
  - Count lost protons in collimators and aperture
  - Well benchmarked against previous generation tools and measurements

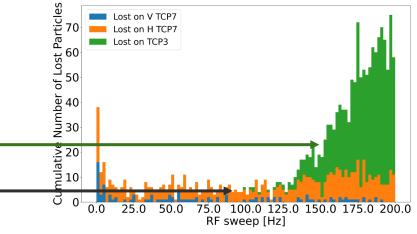
Example initial particles distribution for betatron cleaning simulations in x-plane






# Simulating off-momentum cleaning with Xcoll

- Qualification in operation: shifting RF frequency by a few hundred Hz
- **Dynamic** simulation needed for RF sweep and complex beam dynamics
  - Xcoll capable of mimicking RF sweep
    - Shift applied adiabatically to all particles


$$\label{eq:chi} \boxed{\Delta \zeta = L \frac{\Delta f_{\rm RF}}{f_{\rm RF} + \Delta f_{\rm RF}}}$$

where *L* is the ring circumference,  $\Delta f_{RF}$  is the shift in the RF frequency  $f_{RF}$ .





#### Time profile of losses during an RF sweep



- ~4000 turns needed, accounting for realistic initial particle distribution
- Time profile of losses agrees with measurement:
  primary bottleneck moves IR7 → IR3 at ~160 Hz (at injection)



- Introduction
- Simulation tools
- Selected results
- Conclusions and future steps

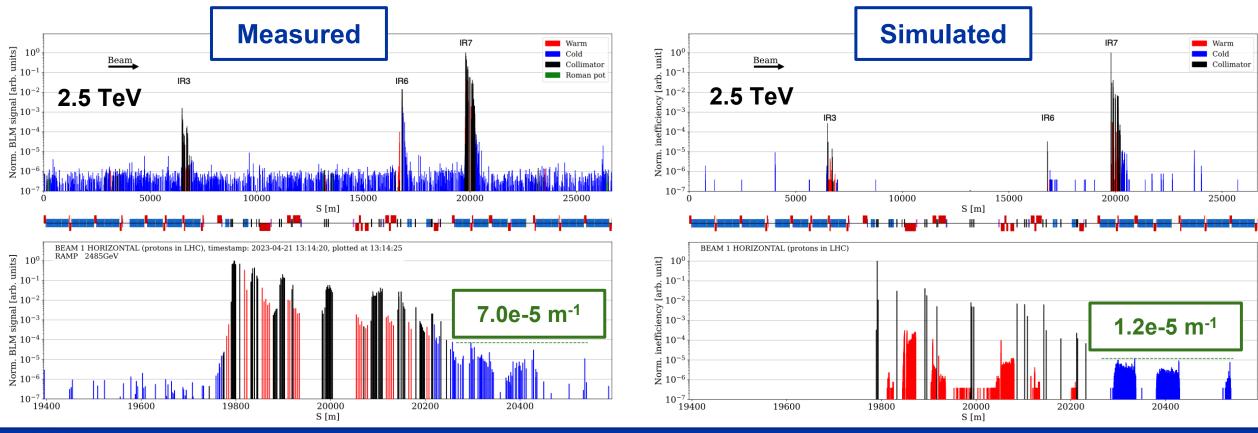


# **Machine configuration**

- Studies conducted for **2023 proton configuration** during ramp
- Input: qualification loss maps from beam commissioning

#### Main settings

|                   | Initial | Final   |
|-------------------|---------|---------|
| E <sub>b</sub>    | 450 GeV | 6.8 TeV |
| β*                | 11 m    | 2 m     |
| V <sub>RF</sub>   | 4 MV    | 12 MV   |
| I <sub>KOF</sub>  | 0 A     | 197 A   |
| Q' <sub>x,y</sub> | 5 or 10 | 5 or 10 |


### Collimator settings during the energy ramp for $\epsilon_{norm}$ = 3.5 $\mu$ m

|                      | Initial [σ]    | Final [σ]    |
|----------------------|----------------|--------------|
| TCP7 / TCSG7 / TCLA7 | 5.7 / 6.7 / 10 | 5 / 6.5 / 10 |
| TCP3 / TCSG3 / TCLA3 | 8 / 9.3 / 12   | 15 / 18 / 20 |
| TCDQ / TCSP6         | 8 / 7.4        | 7.3 / 7.3    |
| TCT1/5/8 / TCT2      | 13 / 13        | 18 / 37      |



# **Betatron cleaning**

- Good qualitative agreement between measurements and simulations
  o Highest losses in IR7: similar loss pattern
- Measurements with BLMs and simulation in Xsuite not to be compared quantitatively (see next slide)



HB-2023



11 October 2023

**Cleaning inefficiency simulations** 

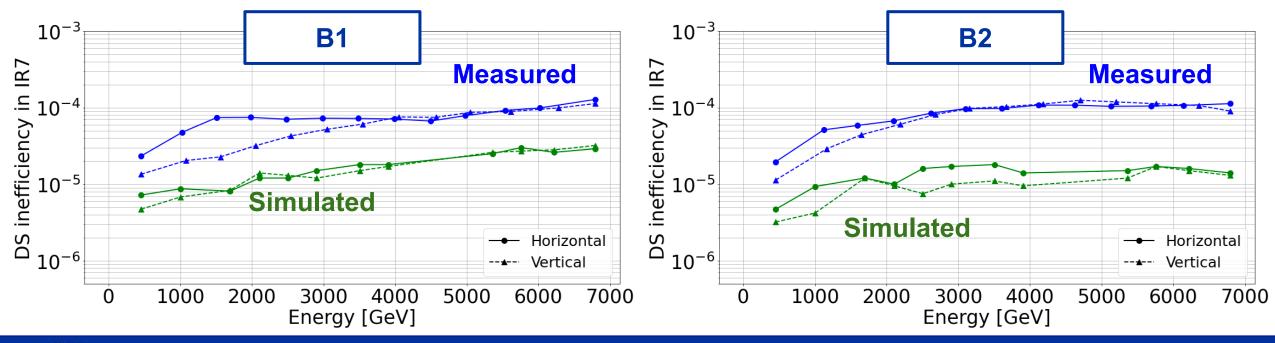
 $\eta = \frac{N_{\rm loc}}{N_{\rm tot}\Delta s}$ 

where  $N_{\text{loc}}$  the local losses over distance  $\Delta s$  and  $N_{\text{tot}}$  is the total number of losses in the collimation system

14

# **Collimation measurements vs simulations**

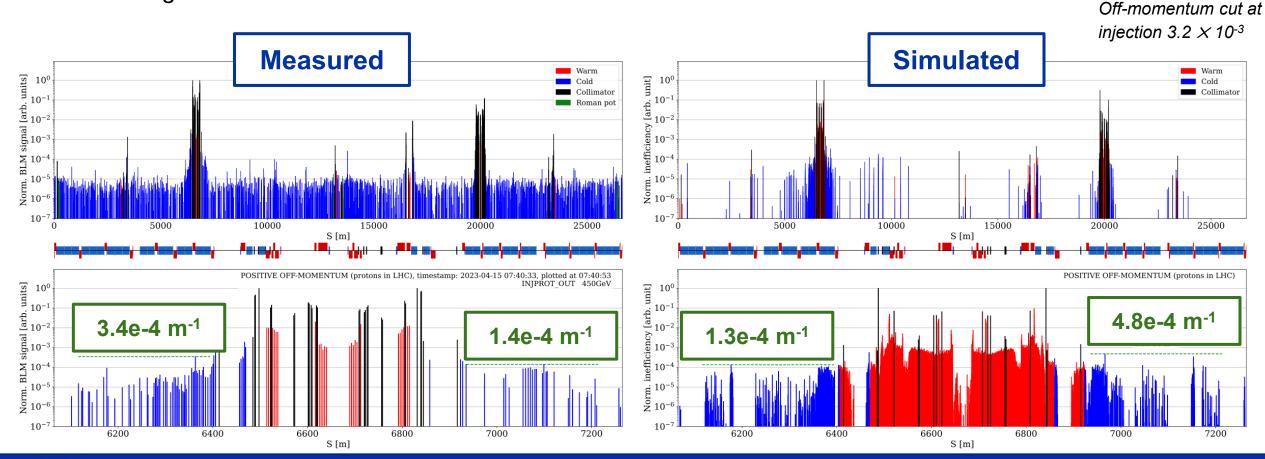
- Beam Loss Monitors measure secondary particle showers outside of the magnet cryostat
- Simulations count protons lost in the aperture
- Measured and simulated loss maps **cannot** be **compared quantitatively**


mounted at an LHC magnet **Counts in measurements** TCT TCP TCSG TCLA Beam Loss Monitor Shower Primary Halo **Counts in simulations** Off-momentum particles Main beam Secondary Halo Tertiary Halo SC triplet Aperture Betatron collimation region IR7 DS Experimental Insertion LHC arc Detector Images source link Normal conducting (warm) Superconducting (cold)



Beam Loss Monitor system

# Betatron cleaning during the energy ramp


- Good qualitative agreement between measurements and simulations
  - B1: Continuous increase of the inefficiency with the energy
  - B2: Increase until ~3 TeV after which it reaches a plateau
  - Apparent correlation of inefficiency vs energy between measurement and simulation
- **Quantitatively**: inefficiency differs by up to one order of magnitude (acceptable considering known limitations)





# **Off-momentum cleaning**

- Example positive off-momentum loss maps at injection energy, RF sweep -200 Hz
- Very good agreement between measurement and simulation
  - Highest losses in IR3





- Introduction
- Simulation tools
- Selected results
- Conclusions and future steps



# **Conclusions and future steps**

- Review of LHC collimation system performance during energy ramp at commissioning 2023
- Use of Xsuite and Xcoll for collimation simulations: very easy set up and implemented RF sweep module
- First simulation results in the energy ramp for the LHC and use of the dynamic RF sweep in Xtrack
  - Very good qualitative agreement between measurements and simulations
  - Quantitative discrepancies observed but expected: BLM signals/simulations represent secondary showers/protons impacting the aperture

#### Next steps

- Study possible impact of machine imperfections and collimator misalignments
- Use of the RF sweep module to simulate the high losses observed at the start of the ramp, ~2s, in IR3



# Thank you for your attention



11 October 2023

HB-2023