Paper | Title | Other Keywords | Page |
---|---|---|---|
WEC4C2 | Multiharmonic Buncher for the Isolde Superconducting Recoil Separator Project | ISOL, cavity, linac, simulation | 321 |
|
|||
Funding: This work has been supported by the European Union ¿NextGenerationEU program The ISOLDE Superconducting Recoil Separator (ISRS) is a proposal of building a very compact separator ring as an instrument in the HIE-ISOLDE facility. The injection of the HIE-ISOLDE beam into this ring requires a more compact bunch structure, so a Multi-Harmonic Buncher device is proposed for this task. The MHB will operate at a frequency of 10.128 MHz, which is a 10% of the linac frequency, and would be installed before the RFQ. The MHB is desgined as a two electrodes system, and the MHB signal, composed for the first four harmonics of the fundamental frequency, is fed into the electrodes that are connected to the central conductor of a coaxial waveguides. The full design of the MHB is presented, including electromagnetic optimization of the electrode shape, optimization of the weights of each of the harmonic contribution, mechanical and thermal design of the structure. The RF generation and electronics to power up the device are also presented. A solution that generates directly the composed signal andis then amplified by a solid state power amplifier is also presented in this contribution. |
|||
Slides WEC4C2 [4.165 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C2 | ||
About • | Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 27 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
FRA1I2 | Design and Beam Commissioning of Dual Harmonic RF System in CSNS RCS | cavity, injection, MMI, space-charge | 633 |
|
|||
The CSNS accelerator achieved an average beam power on target of 100 kW in February 2020 and subsequently increased it to 125 kW in March 2022. Building upon this success, CSNS plans to further enhance the average beam power to 200 kW by doubling the particle number of the circulating beam in the RCS, while keeping the injection energy same. The space charge effect is a main limit for the beam intensity increase in high-power particle accelerators. By providing a second harmonic RF cavity with a harmonic number of 4, in combination with the ferrite cavity with a harmonic number of 2, the dual harmonic RF system aims to mitigate emittance increase and beam loss caused by space charge effects, thereby optimizing the longitudinal beam distribution. This paper will concentrate on the beam commissioning for the 140 kW operation subsequent to the installation of the magnetic alloy (MA) cavity. The commissioning process includes the optimization of RF parameters, beam studies, and evaluation of the beam quality and instability. | |||
Slides FRA1I2 [4.086 MB] | |||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA1I2 | ||
About • | Received ※ 30 September 2023 — Revised ※ 09 October 2023 — Accepted ※ 14 October 2023 — Issued ※ 27 October 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||