Plan de Recuperación, Transformació y Resiliencia

Financiado por la Unión Europea NextGenerationEU

Multiharmonic Buncher for the Isolde Superconducting Recoil Separator (ISRS) Project

5ã0

J. L. Muñoz^{*}, I. Bustinduy, S. Varnasseri, P. González, A. Kaftoosian, L. Catalina-Medina, I. Martel

HB2023, Genève, 11-Oct-2023

(* jlmunoz@essbilbao.org)

Contents

- Introduction to ESSB, ISRS and ISRS R&D program
- Multi-Harmonic Buncher concept and design
- RF power signal generation
- Plans for tests in ESS-Bilbao

Financiado por la Unión Europea NextGenerationEU

Plan de Recuperación, Transformación y Resiliencia

Plan de

Financiado por la Unión Europea NextGenerationEU

J.L. Muñoz, HB2023

ESS-Bilbao

Public consortium of Spanish and Basque Governments, devoted to particle accelerators and neutron scattering science and technologies. Main activity: Spanish in-kind contribution to ESS project (MEBT, RF, Target station, MIRACLES instrument)

ESS-Bilbao

Local project: ARGITU CANS (Compact Accelerator-driven Neutron Source)

- ARGITU is part of European Low Energy accelerator-based Neutron (ELENA) Association.
- ARGITU Accelerator a multi-purpose machine that could provide 30 MeV proton beam.
- The proposed neutron source will have up to 4 instruments per target station, it could be possible to consider a dedicated moderator per instrument.

More info: M. Perez et al., "ARGITU compact accelerator neutron source: A unique infrastructure fostering R&D ecosystem in Euskadi", Neutron News, Vol. 31, issue 2-4, pp. 19-25, Dec. 2020, (https://doi.org/10.1080/10448632.2020.1819140)

Injector (H⁺, He, N), ion source + LEBT (45 keV)

RFQ under fabrication (3 MeV) and testing

ISRS project

ISOLDE Superconducting Recoil Separator

HIE-ISOLDE FACILITY AT CERN

World-leading facility in radioisotope production and acceleration:

- Large range of radioactive beams from 6He – 234Ra
- Wide energy range 0.45 -~ 10 MeV/A
- A Recoil Separator will benefit ISOLDE physics program.

ISRS project

ISRS present configuration

J.L. Muñoz, HB2023

Recoil Separator

- ISRS project proposal
 - ISRS R&D project (Spanish funding)
 - MHB for ISRS

(https://www.uhu.es/isrs/)

I.L. Muñoz. HB2023

- ISRS project proposal
 - ISRS R&D project (Spanish funding)
 - MHB for ISRS

WORK PACKAGE BREAKDOWN

- Reordering of LOI WPs in only three: WP1, WP2 and WP3
- In RED, Spanish institutions receiving funding and responsible of deliverables

I.L. Muñoz, HB2023

- ISRS project proposal
 - ISRS R&D project (Spanish funding)
 - MHB for ISRS

WORK PACKAGE BREAKDOWN

- Reordering of LOI WPs in only three: WP1, WP2 and WP3
- In RED, Spanish institutions receiving funding and responsible of deliverables

- ISRS project proposal
 - ISRS R&D project (Spanish funding)
 - <u>MHB for ISRS</u>

• The purpose of the MHB is to increase the time between bunches:

		Table 1: Comparison of the key parameters of a selection of relevant worldwide MHB-RFQ systems.				
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN-ACC-NOTE-2014-0098		Facility	ATLAS (ANL)	ISAC (TRIUMF)	PIAVE (LNL)	ISOLDE (CERN)
SOLDE	HIE-ISOLDE-PROJECT-Note-0035	RFQ frequency [MHz]	60.625	35.4	80	101.28
		MHB fundamental (beam)	12.125	11.8	40	10.128
		frequency [MHz] $(h = \frac{f_{\text{RFQ}}}{f_{\text{MHB}}})$	(h = 5)	(h = 3)	(h = 2)	(h = 10)
Beam Dynamics Studies of a Multi-harmonic Buncher for 10 MHz Post-accelerated RIBs at HIE-ISOLDE		No. of MHB harmonics	4	3	3	≥ 3
		RFQ structure type	multisegment split-coaxial	4-rod split-ring	superconducting	4-rod ($\lambda/2$)
M.A. Fraser		MHB RF structure type	lumped circuit (resonant)	transmission line (non-resonant)	QWR (resonant)	to be defined
		MHB drift-tube type	single-gap	single-gap	$2 \times$ double-gap	single-gap

J.L. Muñoz, HB2023

Multi-Harmonic Buncher

The optimum field profile for bunching is a saw-tooth profile, that can be achieved by adding-up several harmonic components of the base frequency

• Electrode design (2D-axisymmetric models)

 Integrated computational framework (geometry + mesh + electromagnetic + beam dynamics). ELCANO electromagnetic solver linked with GPT.

- Quick calculation for comparing electrode geometry models.
- Electric field computed for electrostatics model is then modulated according to:

$$E_{MHB}(r,z) = \left(\frac{V_0}{1000}\right) E_0(r,z) \sum_{n=1}^4 (a_n \sin n\omega t)$$

$$a_0=1$$
, $a_1=-0.428$, $a_2=0.215$, $a_4=-0.101$

- Input beam characteristics for this preliminar study: $A/q=4.5, \beta=0.00328$ $\epsilon_x, \epsilon_y=0.62 \text{ mm mrad}$ I = 1 nA (no space charge)
- Final design (for PDR) will be carried out after iterations with ISOLDE team.

J.L. Muñoz, HB2023

• Bunching as a function of electrode voltage and distance, different geometries.

• 3D electromagnetic model in COMSOL

Signal generation

• MHB signal generation and combination

Signal generation

- MHB signal generation and combination
- Combined signal at the test-bench

Tests at ESS-Bilbao

• ESS-Bilbao injector

- Nominal:
 - Proton injector
 - 45 keV
 - 30 mA
- Tests are on-going with lower extraction voltage (loert beta), other species (He,N) to test the MHB

Tests at ESS-Bilbao

ESS-Bilbao injector

[1] Fields optimization Multi-Harmonic Buncher (MHB) design, 2D axisymmetric, 3D in COMSOL and ELCANO (home code) for fine parametric optimization.

[2] Validation. Fields exported for beam dynamics calculations with GPT and TRACWIN code.

[3] Ion Source. versatile Ion source H+, H2+, H3+, He+: New experiments using He, prove different specimens can be used. Experiments conducted with FCT1 showed we can produced and measure 50ns pulsed beams.

[4] **RF Source** Both analog and digital solutions already studied, PID feedback loop tests already implemented and verified in existing Klystron based RF amplifier.

MHB \sim 2 **%** 763 302 DIAGNOSTICS [4] LIMATO 0.62m

Tests at ESS-Bilbao

• ESS-Bilbao injector

[1] Fields optimization Multi-Harmonic Buncher (MHB) design, 2D axisymmetric, 3D in COMSOL and ELCANO (home code) for fine parametric optimization.

[2] Validation. Fields exported for beam dynamics calculations with GPT and TRACWIN code.

[3] Ion Source. versatile Ion source H+, H2+, H3+, He+: New experiments using He, prove different specimens can be used. Experiments conducted with FCT1 showed we can produced and measure 50ns pulsed beams.

[4] RF Source Both analog and digital solutions already studied, PID feedback loop tests already implemented and verified in existing Klystron based RF amplifier.

MHB

[1]

Conclusions

- ESS-Bilbao participates in the ISRS project initiative
- As a part of the work, a Multi Harmonic Buncher device will be designed, and a prototype will be built and a tested
- The MHB will comply with HIE-ISOLDE specifications, so the prototype could be installed or being replicated there
- A SSPA RF signal generation is proposed to power up the MHB with the combined harmonic signal
- Tests will be carried out at ESS-Bilbao injector.

Plan de Recuperación, Transformación y Resiliencia

Financiado por la Unión Europea NextGenerationEU

Thanks for your attention!!

