

PERFORMANCE OF THE ION CHAIN AT THE CERN **INJECTOR COMPLEX AND TRANSMISSION STUDIES** DURING THE 2023 SLIP STACKING COMMISSIONING

M. Slupecki, R. Alemany-Fernandez, S. Albright, M. Angoletta, T. Argyropoulos, H. Bartosik, P. Baudrenghien, G. Bellodi, R. Bruce, M. Bozzolan, C. Carli, J. Cenede, H. Damerau, A. Frassier, D. Gamba, G. Hagman, A. Huschauer, V. Kain, G. Khatri, D. Kuchler, A. Lasheen, K. Li, E. Mahner, G. Papotti, G. Piccinini, A. Rey, R. Scrivens, M. Schenk, A. Spierer, G. Tranquille, D. Valuch, F. Velotti, R. Wegner, CERN, Geneva, Switzerland E. Waagaard, EPFL, Lausanne, SwitzerlandDepartment of Physics

≻ SPS

- Long injection plateau: 48 s
- 14 injections from PS
- Slip-stacking
- Bunch separation at extraction: 50 ns

Bunch intensities and transmission

<u>350 nş</u>

EIR

to PS ext

to PS inj

to ext

- ➤ Intensities per SPS-equivalent bunch in the first three fills of 2023 ion run
 - Beam scraping at SPS due to limitation of the LHC injection system
 - \rightarrow extracted intensity slightly below LIU
 - Most losses between PS ext and SPS inj \rightarrow stripping and long injection plateau
- ➤ Transmission
 - Consistent across the years: 2016, 2022 and 2023
- 2023: average of the first 3 LHC fills with 'stable beams'
- PS extraction to SPS injection data from 2016 used DCBCT (incl. unbunched beam)

to SPS inj to SPS ext

→ **Reduction** of **bunch spacing** from 100 ns to 50 ns

- ➤ 14 batches of 4 bunches each are injected into SPS from PS
- > The beam is **ramped up** to intermediate slip-stacking plateau
- > Two particle beams of different momenta and different RF frequencies **slip longitudinally** relative to each other in the same beam pipe
- > When the two beams are in the correct longitudinal position, the full beam is recaptured with a non-adiabatic voltage jump at the average RF frequency

→ Instabilities at recapture

≻ LEIR

- Emittance LEIR:EC is measured just before switching e-cooler off
- LEIR:RFC is measured at RF capture, 70 ms after switching e-cooler off \rightarrow high 2023 $\epsilon_{\rm H}$ - to be understood

≻ SPS

- Data collected during slip-stacking commissioning (before optimum was found)
- INJ1 and INJ14 show how the emittance of the first 4-bunch batch evolves along the injection plateau

➤ Mitigation

- Phase loop is disabled before voltage jump
- Switch 800 MHz RF on at the moment of recapture
- \rightarrow Increase beam stability and filament faster
- Enable phase loop after filamentation
- \rightarrow Repopulation of bunch center

Filamentation

Summary

> Ion injectors are delivering beams at close-to-LIU parameters > SPS slip-stacking is operationonal and up to specifications ► LEIR beam is not fully understood