

Transverse emittance reconstruction along the cycle of the CERN Antiproton Decelerator

G. Russo, B. Dupuy, D. Gamba, L. Ponce

Acknowledgement: H. Bartosik, E. W. Waagaard, AD & ELENA OP team

The AD cycle

The \bar{p} beam is generated from the collision of p^+ at 26 GeV against a target. After a cleaning from other secondaries the \bar{p} are focused and injected into AD.

12/10/2023 - HB2023 workshop

Emittance from scraper measurements: setup

Emittance measurements with the scraper is a disruptive measurement \rightarrow the entire beam is lost.

Two scintillators are installed horizontally and symmetrically w.r.t. the vacuum chamber.

ED

Working principle

For a 4D Gaussian beam, in the absence of any coupling, the losses can be described as:

Transverse emittance reconstruction along the cycle of the CERN Antiproton Decelerator

Emittance reconstruction

Now operational in AD

Problem discussion

In the past, emittance was calculated considering the distance between the 0% and the 95% of loss particles \rightarrow user dependent

2023/0	19/06 09:12:16:519 ADE TopNON_MULTIPLEXED_AD_2023 ☐ n 1.35⊶1.36 ∰mm.mra	d DX.S05-CT	41000.0 ^{ms} 0.0 ^{ms} 1500 ^{pts}	1024 ^{pts} x2 Unused ^{pts}	1551 pts x1	
	Scraper OBXSCINT OBXSCINT OBXSCINT OBXSCINT OBXSCINT OD 2010[1] OD 2000	Cursors mode 🔗 Active	On	· · ·	· · ·	
Г			2023/09/06_09:12:16.519_ADE_Top pbar			
40 -		DR.SHV1305.TOP	20 mm.s ⁻¹	Travel ^(47⊶-5) mm	2522"	
ي 30-		βeta ^{vertical}	4.288 m	DX.SGS-CT	41000 ^{ms}	
E 20-	95%		BXSCINT_2010[0]			
Bea		beam centre (95%) at	7.98	mm		
10 -		beam edge (0%) at	-0.96	mm		
0 -		$\sigma_{\mathbf{X}} = (\mathbf{C}_1 - \mathbf{C}_0) \div \sqrt{6} \oplus$	3.647	mm		
Ŀ		$\epsilon = (\sigma_{\chi}^{2}) \div \beta $	3.103	μm		
	42000 43000 44000 45000 45000 4 >> Time (ms)>>	$Old_{\epsilon} = (c_1 - c_0)^2 \div \beta @$	18.615	п mm mra 2.963 µm	d	
æ		BXSCINT_2010[1]				
		beam centre (95%) at	7.95	mm		
		beam edge (0%) at	-0.90	mm		
5000		$\sigma_{\chi} = (c_1 - c_0) \div \sqrt{6} \ (1)$	3.614	mm		
		$\varepsilon = (\sigma_{\chi}^2) \div \beta$ ①	3.046	рт		
4000		$Old_{\epsilon} = (c_1 - c_0)^2 \div \beta @$	18.275	п mm mra 2.909 µm	d	
			BXSCAL_2000 (cursors)			
		beam centre (95%) at	7.98	mm		
₽ 3000		beam edge (0%) at	-1.00	mm		
life	95%	$\sigma_{\mathbf{x}} = (c_1 - c_0) \div \sqrt{6} \ (1)$	3.663	mm		
-		$\varepsilon = (\sigma_x^2) \div \beta$ ①	3.13	μm		
2000		$Old_\epsilon = (c_1 - c_0)^2 \div \beta @$	18.779	π mm mra 2.989μm	d	
		① New ADE methode ② C	Old Ade methode			
1000						
0		14				
	<< Position (mm) << (inverted)	1) Old measure (Cursors 95	1) Old measure (Cursors 95%) 2) New measure (Giulia transform)			

Emittance comparison

Scintillator

AD emittance along the cycle

Normalised emittance should \rightarrow remain constant during decelerations \rightarrow Pe \rightarrow decrease along cooling plateaus

 \rightarrow Performance assessment

AD decelerating performance

The normalised emittance is either constant during deceleration (as 2nd deceleration plateau on the V plane) or it increases, meaning that unwanted blow-up occurs. With a unique exception where a reduction on the H plane in 2022 is observed, possibly due to unexpected losses during the process.

AD Stochastic Cooling performance

The normalised emittance is reduced on both SC plateaus with a significant improvement between 2022 and 2023 on both planes. Compartive analysese between the years is not feasible due to the lack of data at the start of the 1st SC plateau in 2022. In general, a good performance improvements has been achieved.

AD Electron Cooling (EC) performance

The normalised emittance is significantly reduced along the two EC plateaus. Along the 1st plateau emittance is reduced of a factor 91 (H) and 84 (V), significantly better than 2022 where the reduction factor was 67 (H) and 79 (V). Performance on the 2nd plateau have been imporved compared to 2022.

AD EC performance @ 100 MeV/c

Giulia Russo

AD Scraping for acceptance measurements

Verifying the actual beam acceptance at the highest and lowest energy plateau:

Conclusions and outlooks

Conclusions:

- ✓ A user-independent emittance procedure has been developed and it is now used during daily operation in AD
- ✓ Performance assessment of AD deceleration and cooling (stochastic and electron) highlighted strong and weak points
- ✓ Acceptance measurements at high energy are in agreement with 2002-2003 data
- $\checkmark\,$ For the first time acceptance at 100 MeV/c has been determined

To be done:

- □ Better understanding the deceleration ramp between 2GeV/c and 300MeV/c
- □ Improve cooling for high action particles at 100 MeV/c
- Optics studies to improve acceptance

Thank you for your attention!