Keyword: MEBT
Paper Title Other Keywords Page
TUC1C2 The Impact of High-Dimensional Phase Space Correlations on the Beam Dynamics in a Linear Accelerator rfq, linac, simulation, LEBT 68
 
  • A.M. Hoover, A.V. Aleksandrov, S.M. Cousineau, K.J. Ruisard, A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, TN, USA
 
  Hadron beams develop intensity-dependent transverse-longitudinal correlations within radio-frequency quadrupole (RFQ) accelerating structures. These correlations are only visible in six-dimensional phase space and are destroyed by reconstructions from low-dimensional projections. In this work, we estimate the effect of artificial decorrelation on the beam dynamics in the Spallation Neutron Source (SNS) linac and Beam Test Facility (BTF). We show that the evolution of a realistic initial distribution and its decorrelated twin converge during the early acceleration stages; thus, low-dimensional projections are probably sufficient for detailed predictions in high-power linacs.  
slides icon Slides TUC1C2 [6.573 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC1C2  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC2I2 SNS Linac Beam Dynamics: What We Understand, and What We Don’t cavity, linac, DTL, operation 91
 
  • A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
At this moment, the Spallation Neutron Source linac accelerates H⁻ ions to 1.05 GeV before they injected into the ring. The beam power on the target is 1.7 MW. The linac includes three main parts - a front-end with ion source, RFQ, and Medium Energy Beam Transport (MEBT) section; a normal temperature linac with Drift Tube Linac (DTL) and Coupled Cavities Linac (CCL); and superconducting linac (SCL). The linac has been in operation since it was commissioned in 2005. This talk discusses the results of beam dynamics studies, existing diagnostic devices, simulation codes and models used in analysis, development and results of linac tuning procedures, and beam loss reduction efforts performed at the SNS linac for 18 years. Considerations about future beam physics experiments and simulations software improvements are presented.
 
slides icon Slides TUC2I2 [1.814 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC2I2  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC2C1 Beam Physics Simulation Studies of 70 Mev ISIS Injector Linac linac, simulation, operation, DTL 97
 
  • S.A. Ahmadiannamin, H.V. Cavanagh, S.R. Lawrie, A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The ISIS neutron spallation source is a pioneering research infrastructure in the field of high intensity accelerator physics, catering to scientific users. Comprising a 70 MeV injector linac and an 800 MeV Rapid cycling synchrotron with two beam targets, this facility has witnessed significant upgrades in recent years, leading to enhanced transmission efficiency. Further optimization efforts are underway to ensure continuous improvement. This article focuses on beam physics simulation studies conducted on the current ISIS linac, aiming to gain a deeper understanding and analysis of various phenomena observed during routine operations and accelerator physics experimentation. By examining these phenomena, valuable insights can be obtained to inform the future development of high efficiency injector of ISIS-II.  
slides icon Slides TUC2C1 [6.467 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC2C1  
About • Received ※ 01 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 13 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I3 ESS Normal Conducting Linac Commissioning Results MMI, DTL, linac, LEBT 118
 
  • Y. Levinsen, M.E. Eshraqi, N. Milas, R. Miyamoto, D. Noll
    ESS, Lund, Sweden
 
  The European Spallation Source is designed to be the world’s brightest neutron source once in operation, driven by a 5 MW proton linac. The linac consists of a normal conducting front end followed by a superconducting linac. The normal conducting part has been commissioned in several stages, with the latest stage involving all but one DTL tank now in 2023. During this commissioning period, we successfully transported a 50 us pulse of the nominal 62.5 mA beam current. We will present an overview of the commissioning results, with a focus on what we achieved in this latest stage.  
slides icon Slides TUA3I3 [31.400 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I3  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I4 SARAF MEBT Commissioning experiment, linac, rfq, proton 123
 
  • N. Pichoff, A. Chancé, J. Dumas, F. Gougnaud, F. Senée, D.U. Uriot
    CEA-IRFU, Gif-sur-Yvette, France
  • A. Kreisel, J. Luner, A. Perry, E. Reinfeld, R. Weiss-Babai, L. Weissman
    Soreq NRC, Yavne, Israel
 
  SNRC in Israel is in the process of constructing a neutron production accelerator facility called SARAF. The facility will utilize a linac to accelerate a 5 mA CW deuteron and proton beam up to 40 MeV. In the first phase of the project, SNRC completed construction and operation of a linac (referred to as SARAF Phase I) which included an ECR ion source, a Low-Energy Beam Transport (LEBT) line, and a 4-rod RFQ. The second phase of the project involves collaboration between SNRC and Irfu in France to manufacture the linac. The injector control system has been updated and the Medium Energy Beam Transport (MEBT) line has been installed and integrated into the infrastructure. Recent testing and commissioning of the injector and MEBT with 5 mA CW protons and 5 mA pulsed Deuterons, completed in 2022 and 2023, will be presented and discussed. A special attention will be paid to the experimental data processing with the Bayesian inference of the parameters of a digital twin.  
slides icon Slides TUA3I4 [2.559 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I4  
About • Received ※ 04 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 29 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP06 Beam Dynamics Study of a 400 kW D⁺ Linear Accelerator to Generate Fusion-Like Neutrons for Breeding Blanket Tests in Korea linac, target, simulation, SRF 411
 
  • Y.L. Cheon, M.Y. Ahn, S. Cho, H.W. Kim
    KFE, Daejeon, Republic of Korea
  • M. Chung, E. Cosgun, D. Kwak, S.H. Moon
    UNIST, Ulsan, Republic of Korea
 
  Recently, a pre-conceptual design study was conducted in Korea for developing a dedicated linear accelerator (linac) for 400 kW (40 MeV, maximum 10 mA CW) deuteron (D⁺) beams to generate fusion-like neutrons*. The accelerated beam hits a solid Beryllium target to produce fusion-like neutrons, which will be utilized for technical feasibility tests of the breeding blanket including tritium production and recovery**. In this work, we present a detailed start-to-end simulation and machine imperfection studies with proper beam tuning, to access the target beam availability and validate the machine specifications. We have designed the 2.45 GHz ECR ion source and a 4-vane type 176 MHz RFQ by using IBSimu, Parmteq, and Toutatis simulation codes. We propose a super-conducting linac with HWR cavities and solenoid focusing magnets to accelerate the beam up to 40 MeV. In the HEBT line, we adopt two octupole magnets and subsequent quadrupoles to make a rectangular-shaped and uniform-density beam with 20 cm x 20 cm footprint at the target. Extensive beam dynamics studies along the linac have been performed using the Tracewin simulation code.
* Y-L. Cheon et al., Journal of the Korean Physical Society (2023): 1-14.
** S-H. Hong et al., Fusion Engineering and Design 189 (2023): 113449.
 
slides icon Slides THAFP06 [1.039 MB]  
poster icon Poster THAFP06 [1.491 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP06  
About • Received ※ 26 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA1I1 Status of the IOTA Proton Injector proton, rfq, electron, LEBT 629
 
  • D.R. Edstrom, D.R. Broemmelsiek, K. Carlson, J.-P. Carneiro, H. Piekarz, A.L. Romanov, A.V. Shemyakin, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This work has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.
The IOTA Proton Injector (IPI), currently under installation at the Fermilab Accelerator Science and Technology facility, is a beamline capable of delivering 20-mA pulses of protons at 2.5 MeV to the Integrable Optics Test Accelerator (IOTA) ring. First beam in the IPI beamline is anticipated in 2023, when it will operate alongside the existing electron injector beamline to facilitate further fundamental physics research and continued development of novel accelerator technologies in the IOTA ring. This report details the expected operational profile, known challenges, and the current state of installation.
 
slides icon Slides FRA1I1 [6.466 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA1I1  
About • Received ※ 08 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)