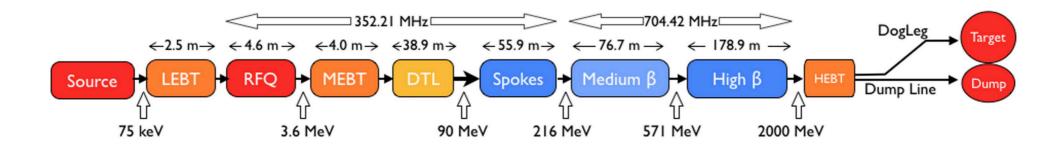


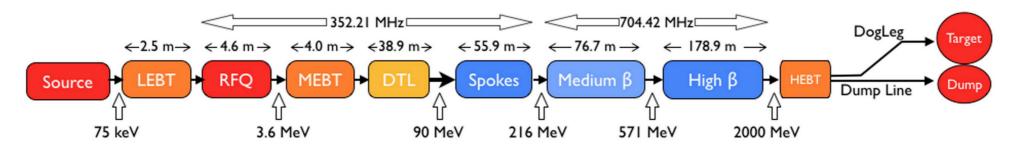
The ESS In-Kind model

ess


With a lot of help from our friends

ESS Project

A world leading spallation source



Parameter	Value
Proton beam power	5 MW
Proton beam energy	2 GeV
Peak current	62.5 mA
Pulse length	2.86 ms
Rep rate	14 Hz
Duty factor	4 %
Bunching frequency	352.21 MHz

Beam Diagnostics

ess

Beam modes and pulse structure

Device	Туре	IS	LEBT	RFQ	MEBT	DTL	SPK	MBL	HBL	HEBT	A2T	DmpL	Total
Faraday cup	Current		1		1	2							4
ВСМ		1	1	1	2	5		1	1	2	3	2	19
Fast BCM					2								2
Doppler			1										1
ВРМ	Parasitic transverse				7	15	14	9	21	16	12	4	98
Non-invasive profile			2		2		1	3	1		1		10
Imaging	Parasitic target/dump transverse										2	1	3
Grid											1		1
Aperture											3	1	4
Emittance	Non-parasitic		1		1								2
Bunch shape					1		1						2
WS					3		3	3	1	3	1		14
BLM	Loss				4	47	78	38	86	51	38	6	348

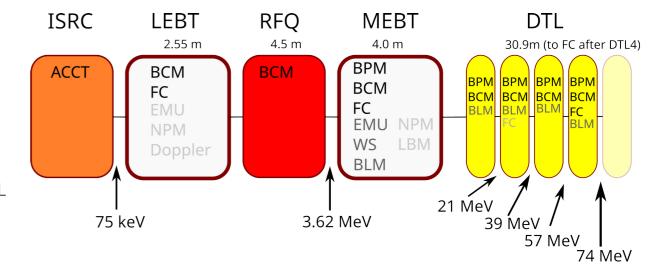
Proton beam

Beam modes and pulse structure

2 stage chopping Source < 75 mA ≤ 3000 µs ~100 µs ≤ 2860 µs LEBT (chopper) 6-65 mA ~0.1+20 µs ≤ 2860 µs ~0.1 µs REQ 6-63 mA **MEBT** (chopper) 6-62.5 mA

~0.01 µs

< 1 uA to DTL4


~0.01 µs

≤ 2860 µs

NCL Overview


- ISRC & LEBT
 - DC beam > 70 mA @ 75 keV
 - Chop pulse, diagnose, focus & match for RFQ
- RFQ
 - 4.5 m, 5 segments, 4-vane, accelerate to 3.62 MeV
- MEBT
 - Diagnose beam, fine chop, collimate, match for DTL
- DTL
 - 5 tanks, accelerate to 90 MeV (74 MeV after DTL4)
 - Temporary beam stop & shield wall in place of 5th tank

Tunnel configuration

NCL commissioning

Throughout commissioning

Throughout commissioning

• January 31st Start of RF commissioning in DTL

Throughout commissioning

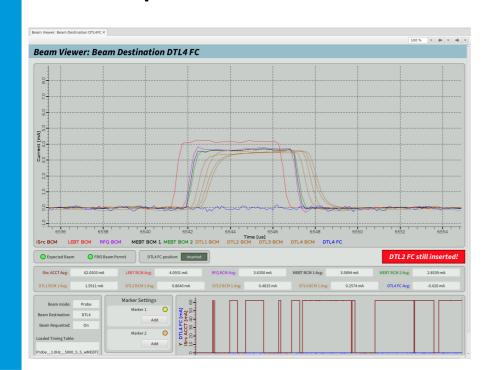
ess

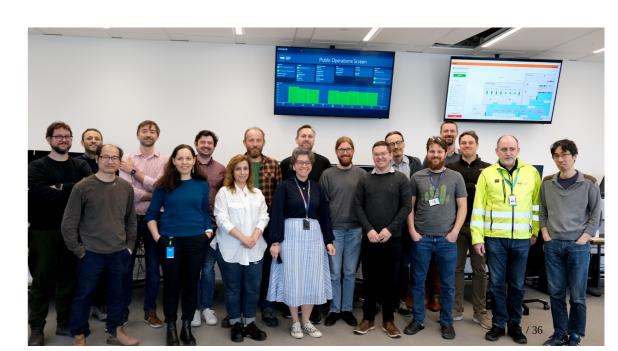
• January 31st Start of RF commissioning in DTL

April 18th First beam extracted from ion source

Throughout commissioning

- January 31st Start of RF commissioning in DTL
- April 18th First beam extracted from ion source
- April 19th First beam to MEBT FC




11 / 36

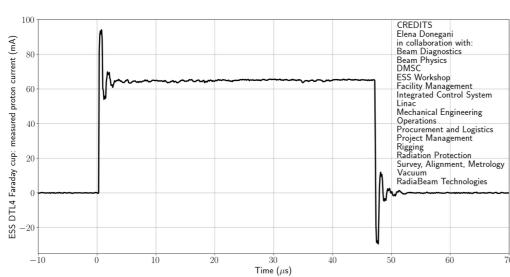
Throughout commissioning

- January 31st Start of RF commissioning in DTL
- April 18th First beam extracted from ion source
- April 19th First beam to MEBT FC
- April 20th First beam through DTL4

Throughout commissioning

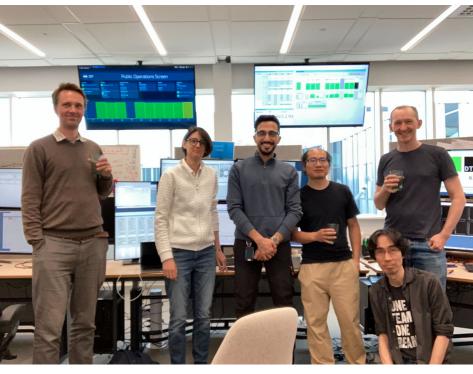
- January 31st Start of RF commissioning in DTL
- April 18th First beam extracted from ion source
- April 19th First beam to MEBT FC
- April 20th First beam through DTL4
- May 4th First beam seen by DTL4 FC

Throughout commissioning


- January 31st Start of RF commissioning in DTL
- April 18th First beam extracted from ion source
- April 19th First beam to MEBT FC
- April 20th First beam through DTL4
- May 4th First beam seen by DTL4 FC
- May 30th First 50us beam through DTL4

Throughout commissioning

- January 31st Start of RF commissioning in DTL
- April 18th First beam extracted from ion source
- April 19th First beam to MEBT FC
- April 20th First beam through DTL4
- May 4th First beam seen by DTL4 FC
- May 30th First 50us beam through DTL4
- July 6th First 50us, 62.5 mA beam through DTL4



ning ir 1 ion so

- may ou i noi ouus deam unougn DTL4

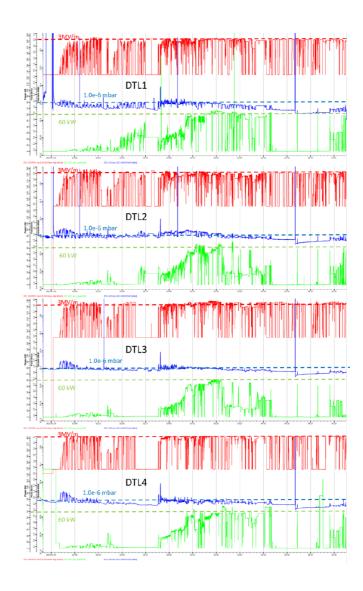
 July 6th First 50us, 62.5 mA beam through DTL4

11 / 36

Throughout commissioning

- January 31st Start of RF commissioning in DTL
- April 18th First beam extracted from ion source
- April 19th First beam to MEBT FC
- April 20th First beam through DTL4
- May 4th First beam seen by DTL4 FC
- May 30th First 50us beam through DTL4
- July 6th First 50us, 62.5 mA beam through DTL4
- July 14th End of beam commissioning to DTL4

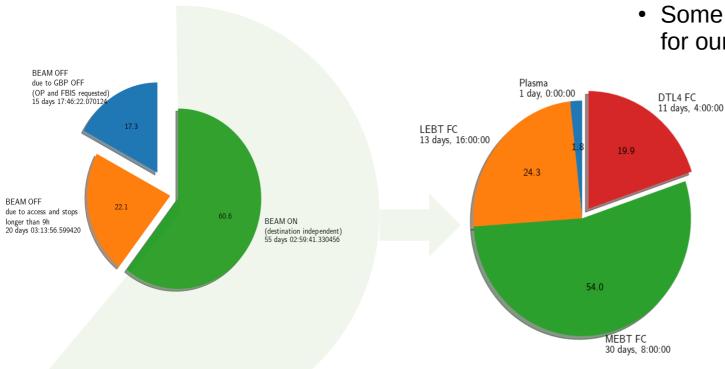
Throughout commissioning


- January 31st Start of RF commissioning in DTL
- April 18th First beam extracted from ion source
- April 19th First beam to MEBT FC
- April 20th First beam through DTL4
- May 4th First beam seen by DTL4 FC
- May 30th First 50us beam through DTL4
- July 6th First 50us, 62.5 mA beam through DTL4
- July 14th End of beam commissioning to DTL4
- August 1st Last day of beam commissioning run

RF Commissioning

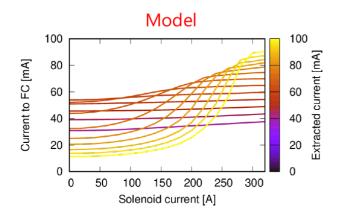
A major non-beam goal of the commmissioning

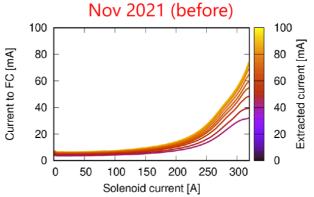
- Overall goal for DTLs was >12hrs with >95% RF at nominal parameters
- Started January 31st (first beam planned mid April)
- One DT replaced in DTL1 after 2022 commissioning
- Quickly reached nominal field for short pulse
- First half of March all DTLs close to reach goals
- Second half of March DTL2&3 RF windows arching


Francesco Grespan/INFN

Beam Availability

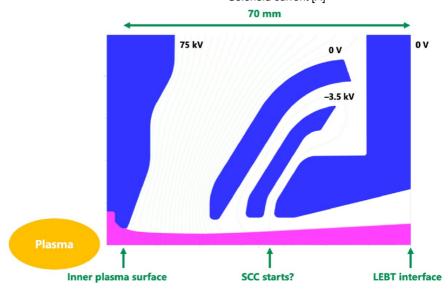
- Excellent support from the OPs crew
- Beam availability good for early stage
- Some interlock/trip analysis work to be done for our 95% availability goal

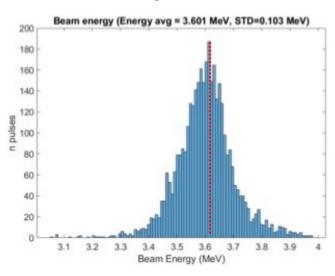


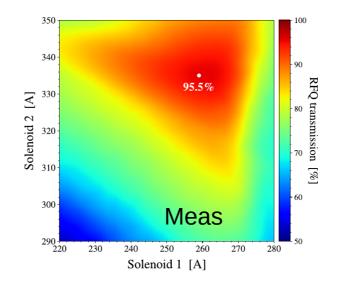

Arkadiusz Gorzawski

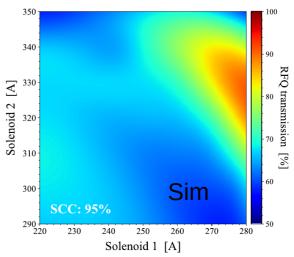

Ion Source extraction

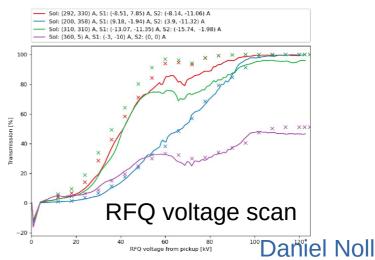
Repeller issue

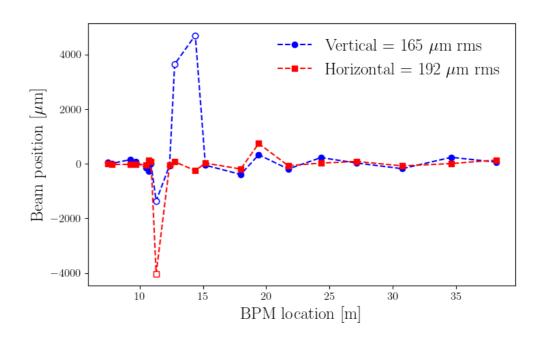



- Large initial divergence and emittance observed during the source+LEBT commissioning in 2019.
- Discovered source repeller was disconnected (maintenance Jan 2022)
- Significantly improved model consistency!
- Data from 2019 less relevant




RFQ Characterization


MEBT TOF - FBPM


- Time-of-flight confirmed ~3.6 MeV
- Voltage scan matched well to reconstructed model
- Transmission match expectations from model (96-98%), solenoid scan pattern differ

Trajectory Correction

- Total of 20 BPM's in the NCL
- RF noise challenges on certain DTL BPMs
- Polarity checks BPMs, correctors
- Ignoring a few BPMs we got a good RMS
- We use SVD for matrix inversion

Natalia Milas

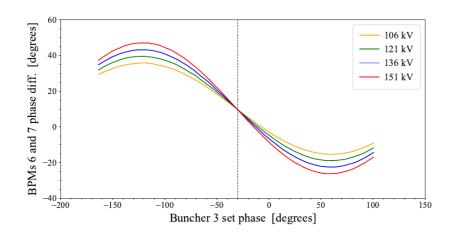
Phase Scans

3 MEBT bunchers and 4 DTL tanks

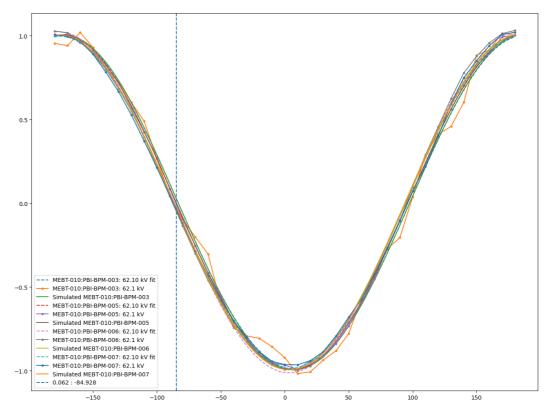
- 3 bunchers
- 4 DTL tanks (3 new)
- 20 BPMs
- Manual set up still achievable
 - For SCL 146 cavities → automation essential
- Frequency jump between Spoke-MBL
 - Amplitude match particularly important

DTL scans

- First (few) internal BPM(s) → sine-like response
- Here we focus on online modelling & fitting
- For more details on DTL measurements, see
 M. Comunian et al. THBP07

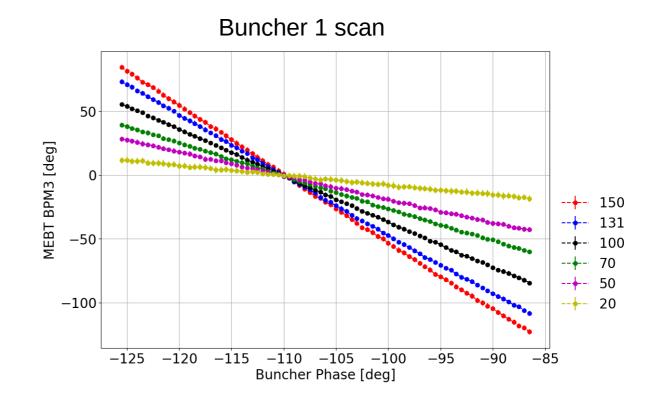

Buncher scans

- Closest BPM may observe RF noise
- Model based (OpenXAL) BPM response fitting
- "Turning off" with time delay is fast
- Fully detuning is time consuming
- Aim for scans w/o needing to detune
 - Lowering current
 - Short pulse


Buncher Phase Scans

- Weighted sum of fit to expected model response of all BPMs
- BPMs close to buncher may see RF noise (orange)
- Automated fit in ~1 min per buncher

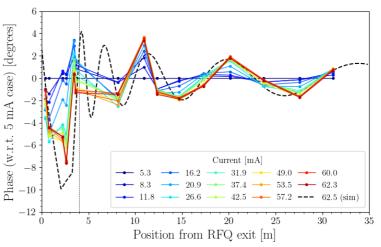
Buncher 2 scan

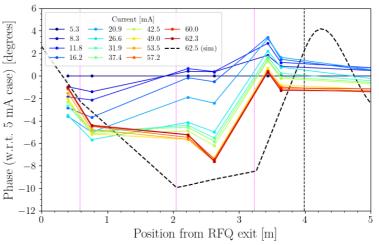

Buncher Phase Scans

To detune or not to detune

- Compared to measurements with fully detuned buncher 2
- BPM3 & 5 gave -110.4 & -111.2 deg
- Compared to -110.7 deg with no detuning
- Amplitude still to be fully verified
- Low current and short pulse seems reasonable

But ...

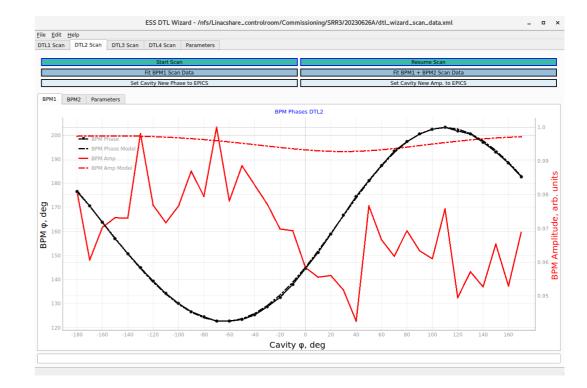

Phase/current dependence



Significant current dependence on beam phase out of RFQ

- Iris cuts of transverse tails → change energy distribution?
- Less severe when current is lowered by Sol2
- RF phase scan at low current, operations at full current
- Effect dampens with energy but emittance blows up.
- Depends on ISrc HV. (Energy mismatch?)

Note: requirements on the set phase/amp is 1-deg & 1%


Ryoichi Miyamoto

DTL Phase Scans

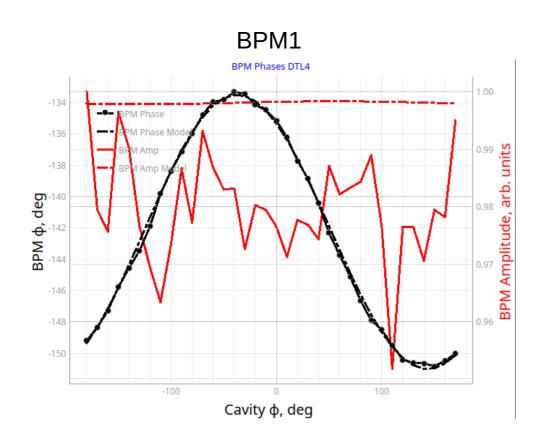
DTL Wizard application

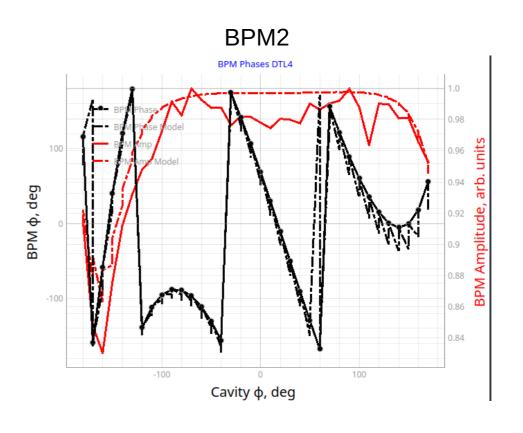
ess

- Dr. A. Shishlo from SNS visited us for 3 months
- Focus on DTL phase scan strategy
- Developed a new application based on PyORBIT
- Together with Dr. S. Zhukov transitioned PyORBIT from Python2 to Python3 github.com/PyORBIT-Collaboration/PyORBIT3
- Evaluated fitting strategy
 - Suggest BPM1 for first guess, BPM2 for precise fitting
- Model improvement identified: calibration of cavity amplitude should take into account the longitudinal bunch size

$$\rho(\phi) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(\phi - \phi_0)^2}{2\sigma^2}}$$

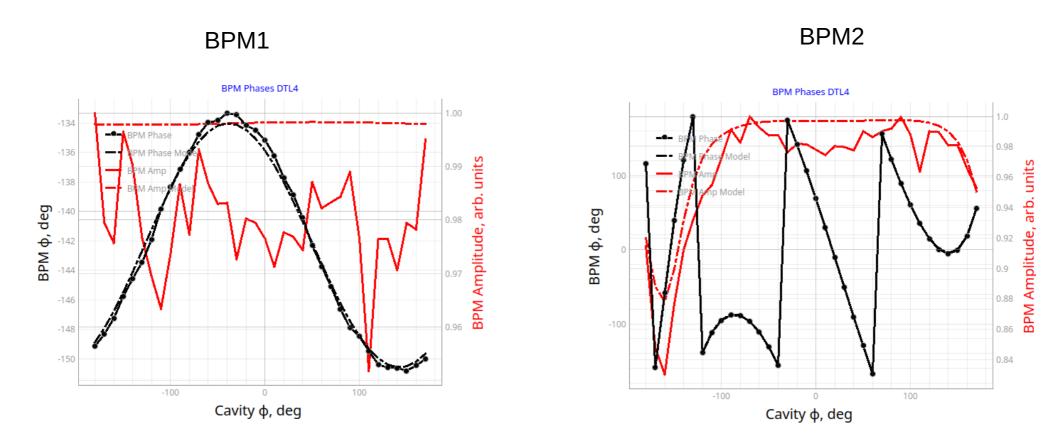
$$\langle \Delta W \rangle = \int \rho(\phi) \cdot qV_0 \cdot TTF \cdot \cos(\phi_0) d\phi = qV_0 \cdot TTF \cdot e^{-\frac{\sigma^2}{2}} \cdot \cos(\phi_0)$$




J. Müller - TUC2C2

DTL Phase Scans

Fitting to internal BPM1 only



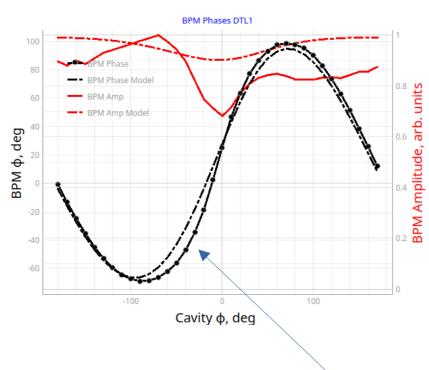
ESS NCL COMMISSIONING RESULTS 23/36

DTL Phase Scans

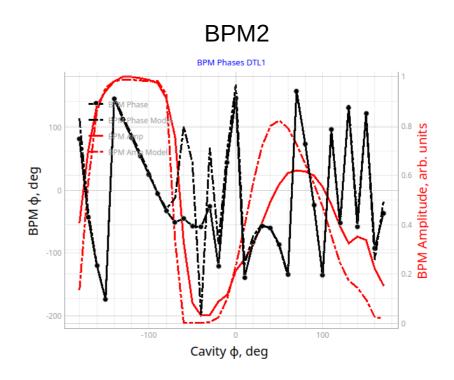
ess

Fitting to internal BPM1 + BPM2

Improved fitting BPM1+2: Use predominantly BPM2 data


ESS NCL COMMISSIONING RESULTS 25/36

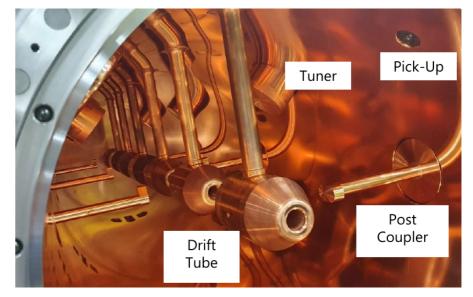
DTL1 Phase Scans


Fitting to internal BPM1 + BPM2

BPM1

Generally DTL1 harder to fit - matching issues?

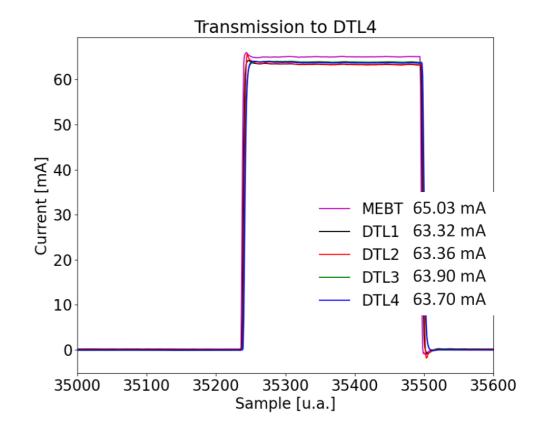
ESS NCL COMMISSIONING RESULTS 26/36


DTL1 Phase Scans

Reproducibility?

Shift	DTL1	DTL2	DTL3	DTL4
20230530B	2.89/-131.8	3.0/-101.4	3.25/-198.1	2.58 /75.8
20230602B	N/A	3.09/-95.1	3.24/-162.9	2.84/101.0
20230602B	N/A	3.11/-99.0	3.27/-161.6	2.84/101.3
20230626A	2.85/-131.3	3.08/-96.2	3.22/-159.6	2.86/109.1
20230711A	2.91 /-152.4	3.08/-115.2	3.22/-179.6	2.85/88.01
20230711A	2.65 /-155.9	3.09/-122.9	3.22/-180.3	2.84/90.2

Selecting a different reference pickup?


Francesco Grespan/INFN

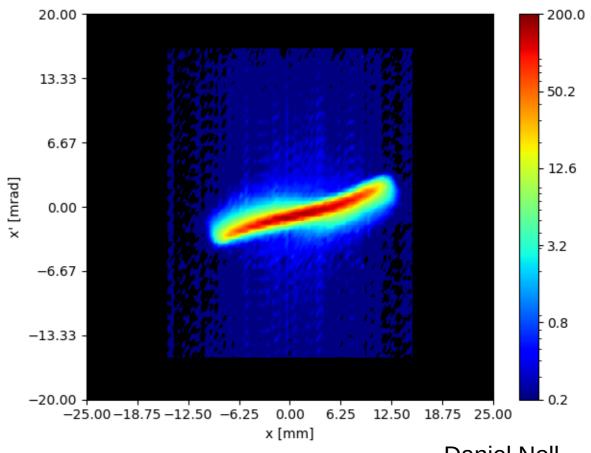
ESS NCL COMMISSIONING RESULTS 27/36

DTL Transmission

- Transmission in DTL ~100%
- Lose beam into DTL1
 - Input conditions?
 - Alignment issues?
 - Beam phase dependency on current in RFQ?

Natalia Milas

EMU H data

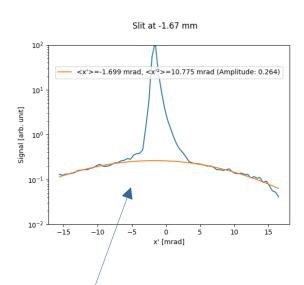


We had horizontal EMU available last days

Technical hurdles and resource limitations

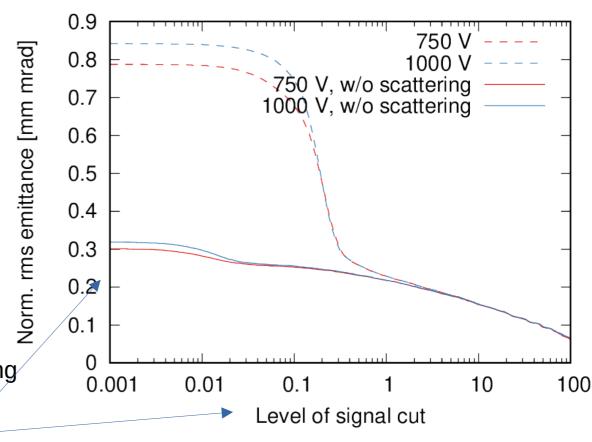
Results fit very well with model predictions!

- very encouraging but we need more data



Daniel Noll

EMU H data


Background subtraction

- Gaussian distributed
- Fit Gaussian to background and subtract
- Then apply flat signal cut
- ESS design 0.25 mm mrad out of RFQ

Daniel Noll

Full NCL installed

End of September we had the entire NCL installed

A particular congratulations and thanks to the INFN Legnaro colleagues!

Summary

- Nominal, 50us beam transported through DTL4
- Trajectory correction worked well
- Phase scan strategy works well
 - Seems precise, uncertain accuracy?
- Transverse measurement encouraging
- More attention needed...
 - Matching into DTL1
 - Phase out of RFQ
 - Source characterization
 - 50 us → 2860 us
 - •
- A successful commissioning campaign
 - Many systems come together
 - Learn how to operate
 - Learn where attention is needed