

SNS Linac Beam Dynamics: What We Understand, and What We Don't

Andrei Shishlo

On Behalf of Beam Science and Technology Section (BeST) SNS, Oak Ridge National Lab, TN USA HB2023, CERN Geneva, Switzerland 9-13 October, 2023,

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Outline

- SNS Accelerator Complex and SNS Linac
- Results Comparison: HB2010 vs. HB2023
- Transverse and Longitudinal Center of Mass Motion
- Transverse and Longitudinal Sizes
- Operational Parameters vs. Design
- SCL Beam Loss and RF Phase Accuracy
- Conclusions

SNS Accelerator Complex

3

A. Shishlo, TUC2I2, HB2023, 9-13 Oct. 2023, CERN, Geneva, Switzerland

SNS Accelerator Performance History

- More than 15 years in operation
- High power operation (> 1 MW) for 13 years
- Availability ~90% (sometimes above, sometimes below)
- Linac activation 45 mR/h max after 1.7 MW last run

HB2010, Morschach, Switzerland – A. Aleksandrov

Proceedings of HB2010, Morschach, Switzerland	WEO2D01	NA – Not applicable	
CHALLENGES OF RECONCILING THEORETICAL AND ME	CASURED	NSG – Not so good	
BEAM PARAMETERS AT THE SNS ACCELERATOR FAC	ILITY	G – Good	
A. Aleksandrov, Oak Ridge National Laboratory, Oak Ridge, TN 37830,	USA	VG – Very Good	

Table 1 Beam Modeling Accuracy in the SNS Linac

Section	Transverse			Longitudinal			Beam Loss,			
	Centroid		RMS Size		Centroid		RMS Size		Transmission	
Year ->	2010	2023	2010	2023	2010	2023	2010	2023	2010	2023
RFQ	NA	=	NA	=	NA	=	NA	=	NSG	G
MEBT	G	=	G	NSG	NSG	=	G	=	NA	NSG
DTL	G	VG	NSG	=	VG	=	NA	=	NA	NSG
CCL	VG		NSG	=	VG	=	NSG	=	NA	NSG
SCL	NSG	VG	NSG	=	VG	=	NA	G	NSG	G

5

Improved

Worse

Simulation Codes ever Used for SNS Linac

Code	Туре	Used for					
		Orb. Correction	RF Phase & Amplitude	Transverse Sizes * WS	Long. Sizes & Twiss	Beam Loss Transmision	
PARMILA	PIC			*	*	DTL1	
OpenXAL OM	Env.	*	*	*	*		
Impact3D	PIC		*	*		*	
Track3D	PIC			*			
PyORBIT	PIC					DTL1	

- PARMILA (PIC), Trace3D (Envelope) design codes for SNS linac
- OpenXAL Online Model (Envelope) code started at SNS
- PyORBIT (PIC) linac part, homegrown

Most progress was achieved with OpenXAL Online Model. We hope to use PyORBIT as PIC code in the future

Transverse Motion of Beam Centroid

Model – OpenXAL – Envelop Model

- Orbit (centroid) difference BPMs' data vs Model is working well in all parts of linac
- Orbit correction does not work everywhere
 - DTL too few BPMs and correctors
 - CCL too few BPMs
- In DTL and CCL Operations use saved BPMs data as a goal and manual small corrections
- In MEBT and SCL model-based orbit correction is working fine
- Sometimes the model-based correction needs several iterations. A probable reason for that is model imperfections (RF settings)

Longitudinal Motion of Beam Centroid - MEBT

Phase scan RF rebuncher in MEBT.

- Non-accelerating phases are different for different BPMs
- Initially was explained by space-charge effects
- After installation and use of MEBT attenuator (metallic grid mesh) for spacecharge suppression did not disappear
- Cannot be reproduced by OpenXAL envelope code or by PIC code with symmetrical (gaussian, waterbag) initial bunches

Longitudinal Motion of Beam Centroid – DTL, CCL

The cavities RF amplitude and phase settings:

CAK RIDGE SPALLATION National Laboratory SOURCE

- We abandoned Delta-T and Phase Signature Fitting methods with external BPMs (except for DTL1 which does not have inner BPMs)
- We use only inner BPMs and model-based analysis (OpenXAL) of 360⁰ range phase scans
- Our accuracy is about 1^o for the phase and 1% for cavity amplitude
- Automated: 22 minutes for RF setup in MEBT, DTL, CCL

Longitudinal Motion of Beam Centroid – SCL

- 360⁰ phase scans, RF amplitude fixed
- Setup physics BPMs Time-Of-Flight
- BPMs' timing calibrated by ring energy
- Automated setup procedure (97 RF cavities)
 - Takes about 45 min
 - Initial (usually historic data)
 - Final by Operations goals: beam loss * trip rate
- Accuracy of the model parameters about 1^o for the phase and 1% for cavity amplitude
- Model-based (OpenXAL) instant rescaling of synchronous phases (in a case of cavity failure)
- Accuracy of rescaling < 1.5 MeV
- Can we do better? Unknown

Transverse Beam Sizes and Profiles

- Right during commissioning: SCL beam loss too high (should be zero)
- Empirical beam loss reduction by lowering SCL quadrupole gradients
- Intra-Beam Stripping of H⁻ mechanism was identified
- Any attempt to improve beam loss by transverse matching in DTL and CCL failed
- Empirical loss tuning was applied to MEBT, DTL, and CCL
- Wire Scanners, laser wire scanners, and emittance devices data did not affect operation practices

Actional Laboratory

Longitudinal Sizes and Twiss

- Methods for longitudinal Twiss extraction from cavity phase scans were developed for SCL and MEBT
- Verified with Bunch Shape Monitors in CCL (for SCL) and DTL1 acceptance scans (for MEBT)
- We did not use these data to improve operations
- Laser Wire "virtual slit" method was developed (by Yun Liu, SNS) to measure longitudinal profiles of beam in SCL
- Some of them show very non-Gaussian shapes
- That is recent development, no beam dynamics analysis was applied yet

CAK RIDGE National Laboratory

Beam Longitudinal Profile at End of SCL

A. Shishlo, TUC212, HB2023, 9-13 Oct. 2023, CERN, Geneva, Switzerland

Production RF Settings in Normal Conducting Section

Cavity	Design φ _{synch} deg	Real φ _{synch} deg	A _{RF} /A _{RF Design} %	
MEBT 1	-90.0	-100.6	145	
MEBT 2	-90.0	-85.6	131	
MEBT 3	-90.0	-103.5	132	
MEBT 4	-90.0	-91.6	129	
DTL 1	-45.0	-43.6	106	
DTL 2	-33.4	-44.4	103	
DTL 3	-32.4	-19.6	99	
DTL 4	-31.7	-30.7	101	
DTL 5	-31.7	-25.2	92	
DTL 6	-34.0	-34.4	97	
CCL 1	-30.9	-16.7	93	
CCL 2	-30.8	-21.6	95	
CCL 3	-30.7	-23.9	98	
CCL 4	-29.3	-18.3	93	

Real SNS Practice

- Perform RF phase & amplitude (or phase only) scan
- Figure out how far we are from the design amplitude and phase
- Move amplitude and phase to the values from previous production setup
- Empirically optimize beam loss and/or set amplitude to reduce RF cavity trip rate
- Perform scans and analysis again and save the deviations from the design
- If some changes will occur, we will use saved deviations to restore the previous state of all cavities
- The new scans take about 22 minutes for all 14 cavities

Data on Feb. 7, 2021, 1.4 MW

13

Simulated Transmission through MEBT-DTL-CCL using PyORBIT Code

Simulation of Each cavity Phase & Amplitude 2D Scan
We changed amplitudes and phases 14 cavities one by one
For each cavity, all downstream ones were tuned according to design
100,000 macro-particles at the MEBT entrance with design Twiss
Transmission was simulated to the end of warm linac

No contradiction to linac classical models

14

SCL Beam Loss and RF Phases Stability

- Existing LLRF phase stability is 0.1°
- We wanted to know big this noise can be for the operational linac
- Several sets of average BLMs signals measurements were performed in SCL
- For each set we generated 100 times RF phases randomly distributed around the production value. The maximal deviation was from 0.5° to 1.4° for different sets.
- Before 0.5⁰ noise level we did not see any changes in beam loss.
- Even max. value of 1⁰ gives us acceptable for production beam loss.

Actional Laboratory

These results are for the linac state far from design:

- Transverse sizes are inflated to reduce IBSt beam loss
- □ There is strong variation (~5°) of bunch phases along 1ms macro-pulse

Conclusions

- Most progress in our knowledge of SNS linac beam dynamics was achieved by using OpenXAL Online Model which is an envelope simulation linac code
- We understand very well transverse and longitudinal motion of bunch center
- Combination of empirical beam loss tuning and modeling of bunch center motion was beneficial for beam availability and low activation of SNS linac
- To improve our knowledge and operation practices further we have to use combination of envelope (fast) * PIC codes (more realistic)

Thank you for your attention!

Questions?

A. Shishlo, TUC2I2, HB2023, 9-13 Oct. 2023, CERN, Geneva, Switzerland