HB 2023

68th ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams CERN, Geneva, Switzerland 9-13 October 2023

Beam dynamics study of a 400 kW D⁺ linear accelerator to generate fusion-like neutrons for breeding blanket tests in Korea

Yoo-Lim Cheon^{1*}, Hyun Wook Kim¹, Mu-Young Ahn¹, Seungyon Cho¹, Emre Cosgun², Seok-Ho Moon², Donghyun Kwak², and Moses Chung^{2*} ¹Korea Institute of Fusion Energy (KFE), Daejeon, Korea ²Ulsan National Institute of Science and Technology (UNIST), Ulsan, Korea

Abstract

D+T Fusion generates neutrons at 14.1 MeV

KOREA INSTITUTE OF FUSION ENERGY

- Tritium breeding blanket : Self-sufficient tritium fuel source (Gap technology between ITER and DEMO)
- Korea Fusion Engineering Advanced Test Complex (KFEAT)
 Main R&D task : Tritium Breeding Unit (TBU) test

Goal

- 400 kW (40 MeV, maximum 10 mA) : ~1/10 of IFMIF-DONES
- CW D⁺ beam
- A dedicated linear accelerator for fusion-like neutrons
- CW beam operation → Long-term continuous neutron yield

Layout of 40 MeV D+ linear accelerator for fusion-like neutron sources in Korea

 $\mathbf{Tot}: \sim 56 \mathrm{m}$

Ion source	LEBT	RFQ	MEBT	SRF Linac		HEBT	Target Cell
ECR IS (NC) 2.45 GHz	Matching between IS and RFQ	4-vane 176 MHz bunching &	Matching between RFQ and SCL	HWR (SC) 176 MHz (2 cryomodules)	HWR (SC) 176 MHz (2 cryomodules)	2 Octupoles (For making	(Solid Be 20 cm x 20 cm) Expected
		acceleration	effect is important	$\beta_{opt} = 0.091$	$\beta_{opt} = 0.181$	uniform beam)	
D+ CW	2 Solenoids	172.3 kW	7 Quads + 2 Rebunchers	1.5 MeV/u -> 6 MeV/u	6 MeV/u -> 20 MeV/u	Two 30° Dipoles (Achromatic)	~10 ¹⁷ n/m ² /s
~12 mA 20 keV/u	20 keV/u	Max 10 mA 1.5 MeV/u	1.5 MeV/u	Solenoid (SC) L_{eff} = 250 mm		Beam diagnostics	Beam Dump

• Benchmark : SARAF-PHASE2 accelerator (D+ CW, 40 MeV, 5 mA \rightarrow 200 kW)

- Deuteron dedicated accelerator & CW 400 kW Superconducting RF linac : HWR cavity + solenoid focusing
- Fusion research target beam : Rectangular shaped, uniform density beam Octupole (non-linear) magnets & quadrupoles

Start-to-end simulation

*Electronic Mail : mchung@unist.ac.kr ylim9776@gmail.com

