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Abstract

Using a Vlasov approach, electron cloud driven instabilities can be modeled to study beam stability on time scales that conventional Particle In Cell
simulation methods cannot access. The Vlasov approach uses a linear description of electron cloud forces that accounts for both the betatron tune
modulation along the bunch and the dipolar kicks from the electron cloud. Forces from electron clouds formed in quadrupole magnets as well as dipole
magnets have been expressed in this formalism. In addition, the Vlasov approach can take into account the effect of chromaticity. To benchmark the
Vlasov approach, it was compared with macroparticle simulations using the same linear description of electron cloud forces. The results showed good
agreement between the Vlasov approach and macroparticle simulations for strong electron clouds, with both approaches showing a stabilizing eflect
from positive chromaticity. This stabilizing effect is consistent with observations from the LHC.

Simulation Model
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e The Vlasov equation is now reduced to an eigenvalue problem [10| [11] Az(z) = Z”Q/ZOO hon (2)
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e The e-cloud forces are introduced in the same manner in MP simulations
utilizing PYHEADTAIL as a tracker for benchmarking.
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