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Abstract
Landau damping plays a crucial role in ensuring single-

bunch stability in hadron synchrotrons. In the longitudinal
plane, loss of Landau damping (LLD) occurs when a co-
herent mode of oscillation moves out of the incoherent syn-
chrotron frequency band. The LLD threshold is studied for a
purely inductive impedance below transition energy, specifi-
cally considering the common case of double harmonic RF
systems operating in counter-phase at the bunch position.
The additional focusing force due to beam-induced voltage
distorts the potential well, ultimately collapsing the bucket.
The limiting conditions for a binomial particle distribution
are calculated. Furthermore, the contribution focuses on the
configuration of the higher-harmonic RF system at four times
the fundamental RF frequency operating in phase. In this
case, the LLD threshold shows a non-monotonic behavior
with a zero threshold where the derivative of the synchrotron
frequency distribution is positive. The findings are obtained
employing semi-analytical calculations using the MELODY
code.

INTRODUCTION
In the longitudinal plane, Landau damping [1] is estab-

lished by the synchrotron frequency spread of individual
particles caused by the non-linear voltage of the RF sys-
tem [2–14]. A common technique to enhance beam stability
is employing multiple RF systems, which can enlarge the
synchrotron frequency spread.

This work focuses on the common case of a double-
harmonic RF (DRF) system and considers a pure inductive
impedance below the transition energy or, equivalently, ca-
pacitive impedance above it.

DRF systems are based on employing a higher harmonic
RF system, typically working at a multiple of the fundamen-
tal RF frequency. In this configuration, the total voltage
experienced by the particles is given by

𝑉rf (𝜙) = 𝑉0 [sin(𝜙 + 𝜙𝑠0) + 𝑟 sin (𝑛𝜙 + 𝑛𝜙𝑠0 +Φ2)] , (1)

where 𝑉0, 𝑟 , and 𝜙𝑠0 are the voltage magnitudes of the main
harmonic RF system, the voltage ratio between the higher
and the fundamental harmonic number, and the phase of
the synchronous particle. As far as 𝜙, 𝑛, and Φ2 are con-
cerned, they represent the phase offset with respect to the
synchronous particle, the harmonic number ratio, and the
relative phase between the two RF systems. Two distinct
operational modes can be distinguished depending on the rel-
ative phaseΦ2. Bunch shortening mode (BSM) occurs when
∗ leandro.intelisano@cern.ch

the RF systems are in phase at the bunch position, leading
to shorter bunches. On the contrary, when the RF systems
are in counter-phase, it is referred to as bunch lengthening
mode (BLM). Figure 1 illustrates the synchrotron frequency
distributions for different orders of RF harmonic number
ratio, 𝑛, in both configurations.
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Figure 1: Synchrotron frequency distribution, normalized
to small-amplitude synchrotron frequency, 𝑓𝑠0, in a single-
harmonic RF system (black), BSM (blue) and BLM (red), as
a function of the maximum phase deviation of the particle.
No acceleration and collective effects are considered.

The studies presented in this contribution have been con-
ducted with semi-analytical calculations using the code
MELODY [15], based on the Oide-Yokya method [16]. To al-
low a direct comparison with the analysis for single RF [12]
and BSM above transition [17], the same accelerator param-
eters outlined in Table 1 have been considered.

Table 1: Main RF Parameters of the LHC

Parameter Unit Value
Circumference, 2𝜋𝑅 m 26658.86
Main harmonic number, ℎ 35640
Main RF frequency, 𝑓rf MHz 400.79
Beam energy at injection, 𝐸0 TeV 0.45
Main RF voltage 𝑉0 MV 6
Effective impedance, Im𝑍/𝑘 Ω −0.07

MAIN EQUATIONS AND DEFINITIONS
For convenience, the analysis is performed with the set of

variables (E, 𝜓) to describe the longitudinal beam dynamics,
which correspond to the energy and phase of the synchrotron
oscillations:

E =
¤𝜙2

2𝜔2
𝑠0

+𝑈𝑡 (𝜙) ,

𝜓 = sgn(𝜂Δ𝐸)𝜔𝑠 (E)√
2𝜔𝑠0

∫ 𝜙

𝜙max

d𝜙′√︁
E −𝑈𝑡 (𝜙′)

,

(2)
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where Δ𝐸 and 𝜔𝑠0 are the energy offset with respect to
the synchronous particle and the angular frequency of
small amplitude synchrotron oscillations in a single RF,
𝜂 = 1/𝛾2

tr − 1/𝛾2 is the phase slip factor, and 𝛾tr is the
Lorentz factor at transition energy.

The solution for the stationary potential 𝑈𝑡 , in Eq. (2),
can be obtained by using an iterative procedure [11], with
given step 𝑚, as follows

𝑈𝑡 ,𝑚 = (1 − 𝜖)𝑈𝑡 ,𝑚−1 + 𝜖𝑈𝑡 (𝜆𝑚−1) ;
𝑈𝑡 ,𝑚 = 𝑈𝑡 ,𝑚 − min

(
𝑈𝑡 ,𝑚

)
;

𝜆𝑚 = 𝜆
(
𝑈𝑡 ,𝑚

)
;𝑚 = 1, 2, . . . .

(3)

If it exists, the solution to this system of equations can be
found for small convergence parameter 𝜖 > 0.

Hereafter, only particle distributions belonging to a bino-
mial family will be considered, i. e.

𝑔(E) =
(
1 − E

Emax

)𝜇
, (4)

where, depending on 𝜇, it covers most of the realistic bunch
distributions in proton synchrotrons, from flat (𝜇 = −1/2)
to Gaussian (𝜇 → ∞). The corresponding line density is

𝜆(𝜙) = 𝜆0

[
1 − 𝑈𝑡 (𝜙)

Emax

] 𝜇+1/2
, (5)

where the normalization∫ 𝜙max

−𝜙max

𝜆(𝜙)d𝜙 = 1 , (6)

has been imposed.

UPPER LIMIT INTENSITY DUE TO
POTENTIAL WELL DISTORTION

In the case of constant inductive impedance and taking
into account binomial distribution according to Eq. (4), the
total steady-state potential in Eq. (3) can be written in an
implicit form, as follows [5]:

𝑈𝑡 (𝜙) = 𝑈rf (𝜙) + 𝜁Im𝑍/𝑘 [𝜆(𝜙) − 𝜆0] , (7)

where Im𝑍/𝑘=const, 𝑘 represents the revolution harmonic,
and 𝜁 is the intensity parameters defined

𝜁 =
2𝜋𝑞𝑁𝑝ℎ

2 𝑓0

𝑉0
, (8)

with 𝑓0 as the revolution frequency.
Note that 𝑈𝑡 (𝜙max) = Emax, where Emax and 𝜙max are re-

spectively the maxima of the synchrotron oscillation energy
and phase of the total potential in the bunch. Assuming
𝜇 = 0.5 one gets

𝑈rf (𝜙max) = Emax + 𝜁𝜆0 . (9)

Substituting Eq. (9) into Eq. (7), the total potential can then
be written

𝑈𝑡 (𝜙) = 𝑈rf (𝜙)
Emax

𝑈rf (𝜙max)
. (10)

Therefore, the total potential is directly proportional to the
RF potential.

Inserting Eq. (10) into Eq. (5), we can integrate over the
maximum phase to obtain 𝜆0:

𝜆0 =
1∫ 𝜙max

−𝜙max

(
1 − 𝑈rf (𝜙)

𝑈rf (𝜙max )

)
d𝜙

. (11)

Eventually, combining Eqs. (11) and (9), yields:

𝜁cc = (𝑈rf (𝜙max)−Emax)
∫ 𝜙max

−𝜙max

(
1− 𝑈rf (𝜙)

𝑈rf (𝜙max)

)
d𝜙 . (12)

Equation (12) represents the critical intensity parame-
ter. The induced voltage acts as a focusing force when
𝜂Im𝑍/𝑘 < 0. Therefore, the total potential well shrinks
with the intensity, ultimately collapsing the buckets. Results
obtained by iterative procedure (Eq. (3)) confirm the analytic
predictions given by Eq. (12) and are shown in Fig. 2. In
the case of 𝜇 ≠ 0.5, only empirically fitted functions are
proposed for the moment.
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Figure 2: Comparison between the critical curve Eq. (12)
(black) and MELODY (dots) in the BSM (top) and BLM (bot-
tom) configurations is considered for harmonic and voltage
ratios 𝑛 = 4 and 𝑟 = 0.25, respectively. For distribution
functions with 𝜇 = 1.5 and 𝜇 = 2.0, fitted functions (dashed
lines) are proposed.

LLD DAMPING BELOW TRANSITION
ENERGY

For 𝜂Im𝑍/𝑘 < 0, i. e., inductive impedance below transi-
tion energy (or capacitive above), coherent modes emerge
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below the minimum incoherent frequency. Hence, LLD
threshold is reached when Ω ≡ min [𝜔𝑠 (E)]. In configura-
tions where the minimum falls on the tail of the frequency
distribution, such as BSM (or BLM in specific cases), we
expect that the LLD is independent of the cutoff frequency,
as seen in single RF case [12].

Figure 3 summarizes the LLD threshold, computed using
MELODY, as a function of the particle phase deviation in
BSM. For a harmonic number ratio of 𝑛 = 2, Fig. 3a confirms
that the LLD threshold is independent of the cutoff frequency
for 𝜇 = 1.5 (diamonds) and in agreement with the single
RF system case [12]. Furthermore, the threshold disappears
beyond the critical curve for larger bunch lengths. Also for
particle distributions with 𝜇 = 0.5, this dependence persists.
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Figure 3: The LLD threshold, computed using MELODY,
as a function of the maximum phase deviation of the particle
in BSM. The second harmonic case (top) is illustrated for
different cutoff frequencies, 𝑓𝑐. The fourth harmonic case is
shown at the bottom for 𝜇 = 0.5 and 𝜇 = 1.5. A forbidden
zone is highlighted in grey where d 𝑓𝑠/d𝜙 > 0.

In the fourth harmonic configuration, the LLD is no longer
a monotonic function [17] caused by the presence of a pos-
itive derivative in the synchrotron frequency distribution.
This grey zone where d 𝑓𝑠/d𝜙 > 0 [11] represents a region
in which the LLD vanishes and coherent instabilities can
easily be triggered. Similarly to the 𝑛 = 2 case, dependence
on the cutoff frequency is not observed for particle distri-
bution with 𝜇 = 1.5 (diamonds), while being present for
𝜇 = 0.5. Moreover, the LLD threshold exceeds the critical
curve around 𝜙 = 0.8 rad.

In BLM, Fig. 4 shows that the LLD threshold is monotonic
with the maximum phase deviation of the particle, contrary
to the case 𝜂Im𝑍/𝑘 > 0 [9, 11, 13].

Note that in Fig. 4b, there are points with a jump of the
derivative of the LLD threshold over the phase. This is linked
to the fact that upon a certain bunch length, the minimum
of the synchrotron frequency distribution moves from the
center to the tail of the bunch and, hence, is no longer being
dependent on the cutoff frequency, similar to the BSM case.
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0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

𝜙 (rad)

𝜁
Im

𝑍
/𝑘

𝑟 = 0.05 𝑟 = 0.09
𝑟 = 0.13 𝑟 = 0.17
𝑟 = 0.21 Critical curve 𝜇 = 1.5
Single RF

𝑑𝜁/𝑑𝜙 Jump

(b) 𝑛 = 4; 𝜇 = 1.5.

Figure 4: The LLD threshold in BLM computed semi-
analytically with the MELODY code. The case of 𝑛 = 2 is
illustrated on the top for different distributions and cutoff
frequencies. On the bottom, the fourth harmonic RF system,
𝑛 = 4, is considered and compared with the single RF case
(solid line). The black dashed line represents the critical
curve for 𝜇 = 1.5.

CONCLUSION

The loss of Landau damping in synchrotrons is a critical
condition that can lead to beam instabilities and particle loss.
The present study focuses on the LLD threshold within the
common configuration of BSM and BLM when inductive
impedances below transition energy (or capacitive above)
are involved. The limiting intensity for a binomial particle
distribution was calculated analytically and compared with
results from the semi-analytical code MELODY.

In BSM, loss of dependency on the cutoff frequency
in the LLD threshold agrees with the prediction showing
a non-monotonic behavior. As expected, regions where
d 𝑓𝑠/d𝜙 > 0 led to a vanishing LLD threshold at any inten-
sity. On the contrary, in BLM, the LLD threshold results in
a monotonic function.
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