

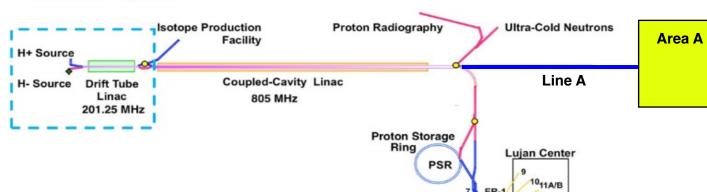
Multi-Beam Operation of LANSCE Accelerator Facility

Yuri Batygin

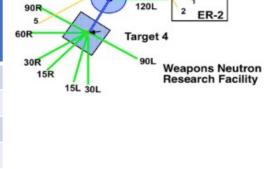
Los Alamos National Laboratory, NM 87545, USA

HB2023

October 10, 2023


LA-UR-23-31117

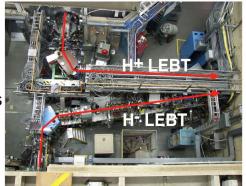
LANSCE Accelerator Facility


0.75 MeV 100 MeV

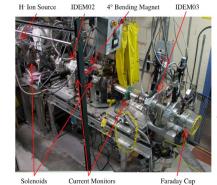
800 MeV

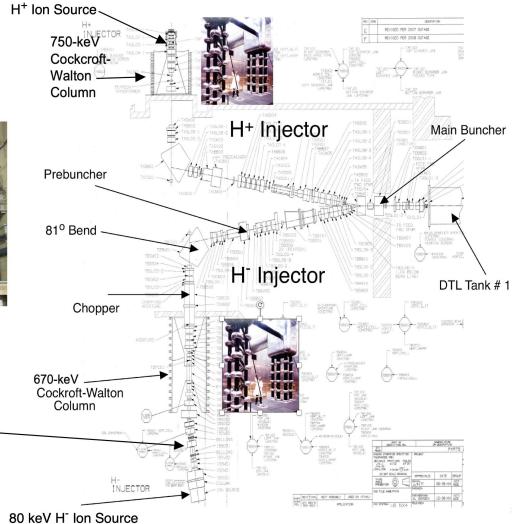
Beam Parameters

Area	Rep. Rate (Hz)	Pulse Length (μs)	Current / bunch (mA)	Average current (μΑ)	Average power (kW)
Lujan	20	625	10	100	80
IPF	100	625	4	250	25
WNR	100	625	25	4.5	3.6
pRad	1	625	10	<1	<1
UCN	20	625	10	10	8

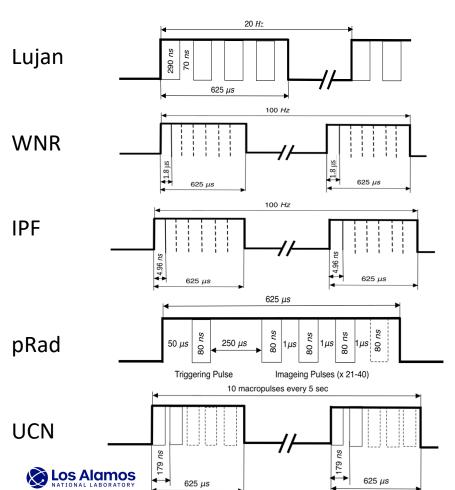

Target 1
Target 2

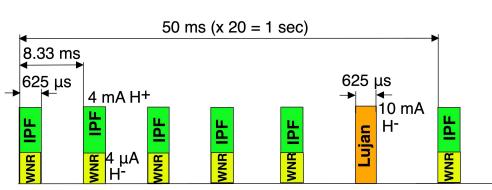
13



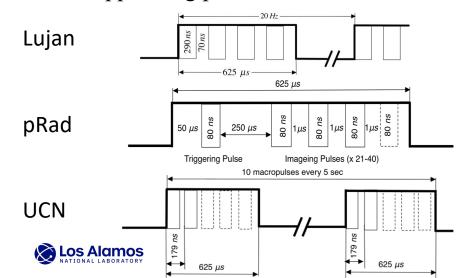

750 keV LANL Injector of H⁺/H⁻Beams

750 keV H⁺/H⁻ Beams **Transport**

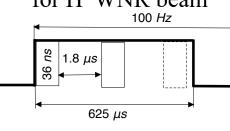

80 keV H Beam Transport



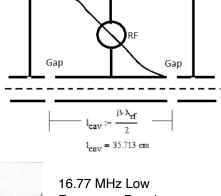
Time Structure of LANSCE Beams

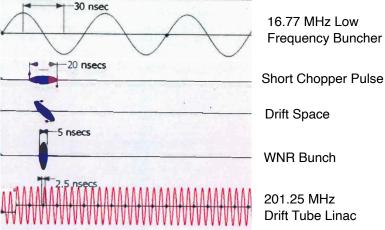

Layout of Lujan/WNR/IPF beams. Beams delivered to pRad or UCN facilities "steal" their time cycles from WNR beam.

Formation of Multi Beam Structure

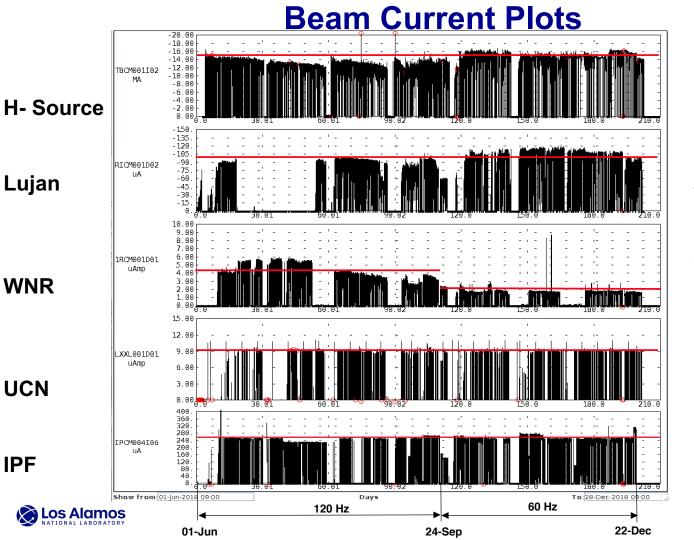


LANSCE slow-wave chopper


Chopper long pulse mode for H- beams



Chopper short pulse mode for H- WNR beam



Low Frequency Buncher (16.77 MHz)

Formation of a high-charge single WNR bunch

Lujan

WNR

UCN

IPF

Planned average beam current

Operation schedule

Maintenance: 4 months

Tune-up: 1.5 months

Operation: 6 months

Number of operation hours: ~ 3500 /year

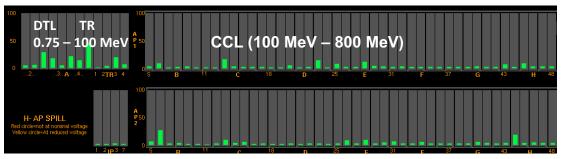
Beam Emittance Growth in LANSCE Linear Accelerator

Beam (Facility	Source	0.75	100	800	Charge/	Emittance
		MeV	MeV	MeV	bunch	growth in
					(pC)	linac, $\varepsilon_{\rm f}$ / $\varepsilon_{0.75}$
H ⁻ (Luj/pRad/UCN)	0.018	0.022	0.045	0.07	50	3.2
H-(WNR)	0.018	0.027	0.058	0.124	125	4.6
H ⁺ (IPF), DTL only	0.003	0.005	0.026		20	5.2
H ⁺ (Area A, 1995)	0.005	0.008	0.030	0.07	82	8.7

Normalized transverse rms beam emittance (π cm mrad), charge per bunch (pC), and emittance growth in linac.

LOAPI

Activation Protection (AP) scintillation detector

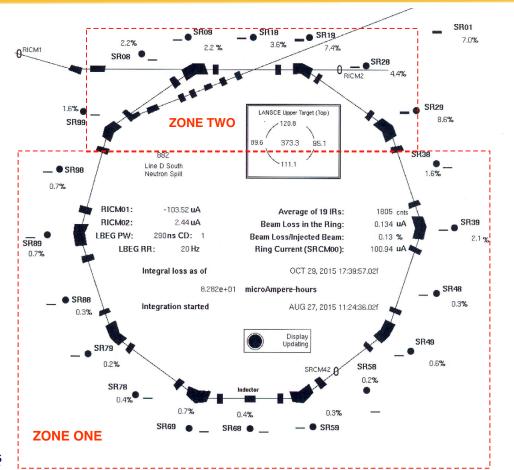


Ion Chamber (IR) and Gamma Detector (GD)

Los Alamos

NATIONAL LARGEATORY

Beam Loss in Linac and HEBT


Average beam loss in CCL linac:

3 x 10⁻⁶ m⁻¹ ~ 0.2 W/m

Average beam loss in highenergy beamlines:

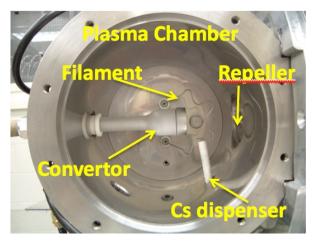
2x10⁻⁵ m⁻¹ ~ 1.6 W/m

Beam Loss in Proton Storage Ring (PSR)

Year	PSR Beam Losses (%)
2022	0.30
2021	0.28
2020	0.35
2019	0.14
2018	0.39
2017	0.32

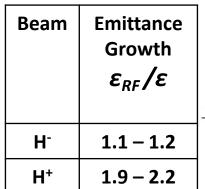
Sources of Beam Emittance Growth and Beam Loss in LANSCE Linear Accelerator

SignificantModerateInsignificant

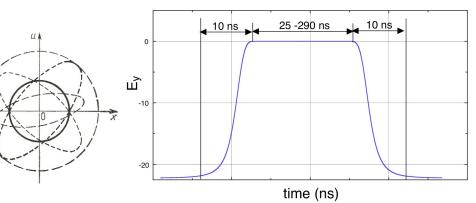

Source	0.75 MeV LEBT	100 MeV DTL	800 MeV CCL	800 MeV HEBT
Misalignments of accelerator channel components		•		No Data
Transverse-longitudinal coupling in RF field				N/A
H-beam stripping on residual gas, intra-beam stripping	•			
Nonlinearities of focusing and accelerating elements	•	•	•	•
Space-charge forces of the beam	•			
Mismatch of the beam with accelerator structure				
Instabilities of accelerating and focusing field				
Beam energy tails from un-captured particles				
Dark currents from un-chopped beam				
Excitation of higher-order RF modes	•	•	•	N/A

H⁺ and H⁻ Ion Sources

Side view of assembled LANSCE duoplasmatron proton ion source.

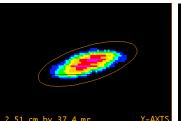

Cesiated, multicusp-field, surface-production H⁻ ion source

Beam	Current, <i>I</i> (mA)	Normalized Emittance, ε _{rms} (π cm mrad)	Normalized Beam Brightness, $B = I / (8 \pi^2 \varepsilon^2_{rms})$ A/(π m mrad) ²
H ⁺	10 - 30	0.003 - 0.005	20
H-	14 - 20	0.016 - 0.018	0.6

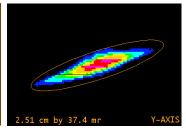


Beam Emittance Growth in 750-keV Beam Transport

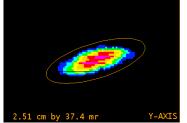
RF Bunching

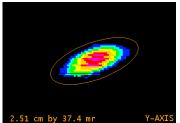


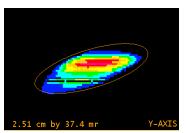
H- Beam Chopping



H ⁻ Chopper Pulse	Emittance Growth $\varepsilon_{Ch}/\varepsilon$
290 ns	1.1
36 ns	1.3


Bunchers Off

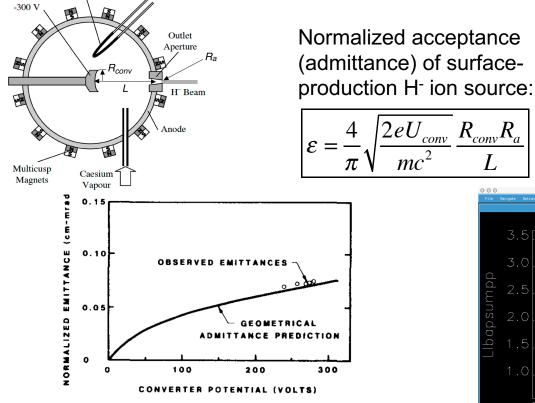

Bunchers On

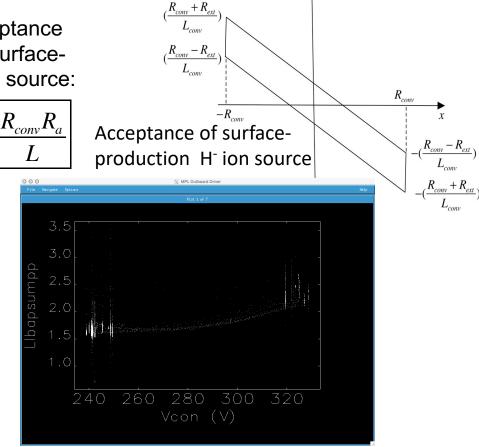

Chopper Off

Chopper pulse 290 ns

Chopper pulse 36 ns

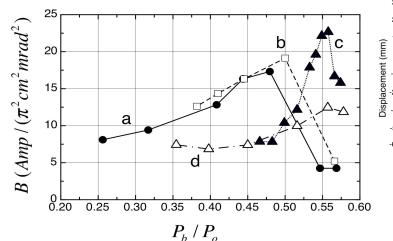
Mitigation of H⁻ Beam Loss via Adjustment of H⁻ Source




Fig. 3 Normalized emittance vs converter voltage H⁻ beam emittance versus converter voltage (R.

Stevens et al, Proc. LINAC 1984, p. 226).

Surface


Converter Electrode Heated Filament

Summed beam loss in CCL versus reduction of H⁻ source convertor voltage (courtesy of Larry Rybarcyk, 2019).

Maximization of H⁺ Beam Brightness and Beam Based Alignment

 $x'_0 + \Delta x$

750-keV H⁺ LEBT misalignments

Minimization of beam offset in a sequence of quadrupoles

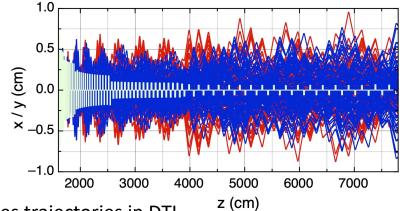
 Δx_i

H+ beam brightness as function of ratio of beam perveance to Child-Langmuir perveance

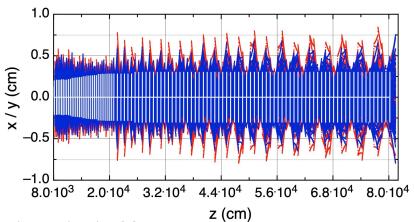
$$\eta = \frac{P_b}{P_o} = \frac{9}{\sqrt{2}S^2} \frac{I}{I_c} (\frac{mc^2}{qU_{ext}})^{3/2}$$

750-keV RMS
Beam Emittance
Before Alignment,
π cm mrad
(Initial/Final)

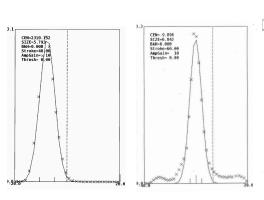
750-keV RMS
Beam Emittance
After Alignment,
π cm mrad
(Initial/Final)


0.002/ 0.007

0.002/ 0.004


Beam Mismatch in Linear Accelerator

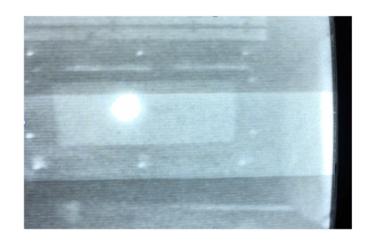
Mismatched particles trajectories in DTL.



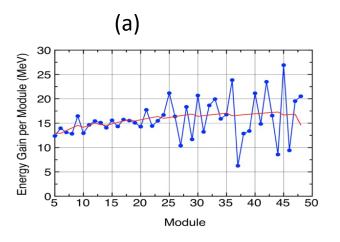
Mismatched particle trajectories in CCL.

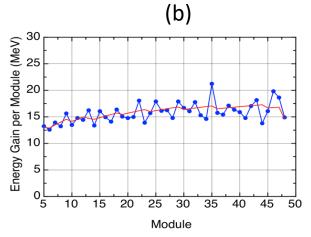
Low-Momentum Beam Spill in High-Energy Beamlines

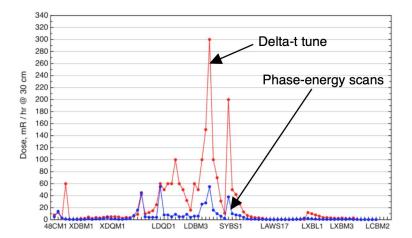



Measurement of momentum spread of the beam: (left) properly tuned beam, (right) beam with momentum tails due to improper tune.

$$\frac{\Delta p}{p} = \frac{\sqrt{R_x^2 - \beta_x (4 \, \vartheta_{x_rms})}}{\eta} = 8 \cdot 10^{-4}$$

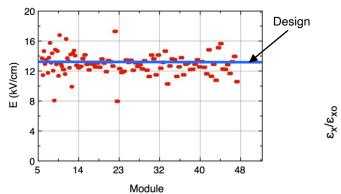

Location of beam spectrometer LDWS03 in high-energy part of accelerator facility

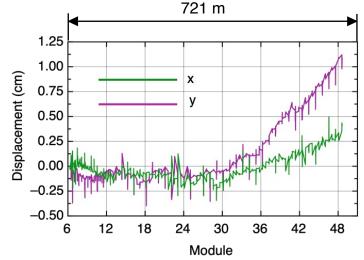


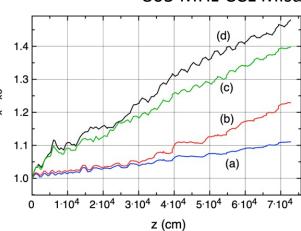


Mitigation of Beam Loss in HEBT

Energy gain per module: (a) after delta-t tune, (b) after phase-energy scans tune, (red line – design).

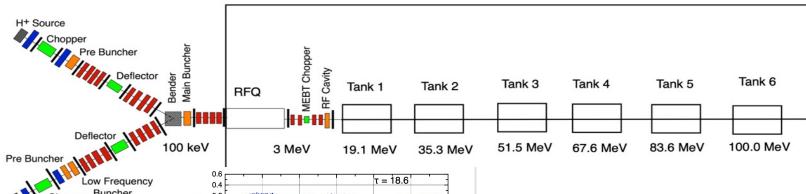

Switchyard radiation survey after different CCL tunes.


Effect of Lattice Misalignment and RF Field Variation on Beam Parameters


Measurement of DTL linac misalignment.

Measured RF Field Amplitudes in CCL Linac.

805 MHz CCL Misalignment Data



Beam emittance growth along CCL linac: (a) ideal structure (b) structure with misalignment (c) structure with misalignment, and beam space charge, (d) structure with misalignments, beam space charge, and RF field variation.

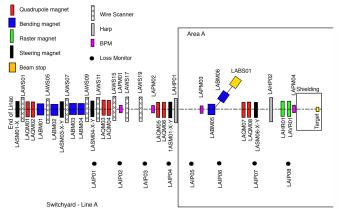
0 1·10⁴ 2·10⁴ 3·10⁴ 4·10⁴ 5·10⁴ 6·10⁴ 7·10⁴

V

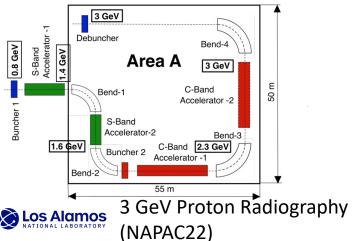
Novel 100 MeV LANSCE Front End

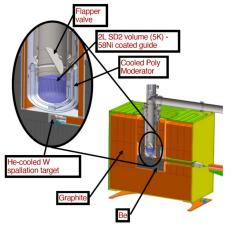
Formation of the two-component beam in RFQ: (red) H⁺ beam, (blue) H⁻ beam.

H- Source

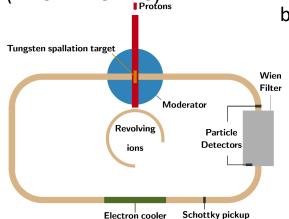


x (cm) -0.6 35 37 $\tau = 37.2$ -0.4 -0.678 79 80 81 82 83 $\tau = 55.8$ (ED) × 0.2 0.0 -0.2 -0.4132 131 133 134 135 136 137 138 $\tau = 74.4$ 0.2 -0.2 214 216 218 220 222 224 226 228 z (cm)


Parameters of injector


Ions	H+/H-
Ion sources extraction voltage	100 keV
RF Frequency	201.25 MHz
RFQ energy	3 MeV
Repetition rate	120 Hz
Max beam peak current	32 mA
Average current	1 mA
Beam pulse	625-1000 μs
Number of RFQ cells	187
RFQ Length	4.2 m

Future Plans and Upgrade of LANSCE



Restore 1 MW proton beam for Fusion Prototypic Neutron Source (LA-UR-19-32216)

Upgrade of UCN Facility (LA-UR-21-31223)

Electron cooler

Experimental Area A has not been used since 1999.

> Neutron target for heavy ion physics study (LA-UR-21-31223)

Summary

- 1. The unique feature of the LANSCE accelerator facility is multi-beam operation, simultaneously delivering beams to five experimental areas.
- 2. Multi-beam operation requires compromises in beam tuning to meet beam requirements at the different targets while minimizing beam losses throughout the accelerator.
- 3. The near term plans are to replace obsolete systems of the LANSCE linear accelerator with modern 100-MeV Front End with significant improvement of beam quality.

