JACoW logo

Journals of Accelerator Conferences Website (JACoW)

JACoW is a publisher in Geneva, Switzerland that publishes the proceedings of accelerator conferences held around the world by an international collaboration of editors.


RIS citation export for WEA3C3: Differential Algebra for Accelerator Optimization with Truncated Green’s Function

TY  - CONF
AU  - Park, C.S.
ED  - Cai, Yunhai
ED  - Nagaitsev, Sergei
ED  - Kim, Dong Eon
ED  - Marx, Michaela
ED  - Schaa, Volker R. W.
TI  - Differential Algebra for Accelerator Optimization with Truncated Green’s Function
J2  - Proc. of HB2023, Geneva, Switzerland, 09-13 October 2023
CY  - Geneva, Switzerland
T2  - ICFA Advanced Beam Dynamics Workshop on High-Intensity and High-Brightness Hadron Beams
T3  - 68
LA  - english
AB  - Accelerator optimization is a critical problem in the design of high-performance particle accelerators. The truncated Green’s function space charge algorithm is a powerful tool for simulating the effects of space charge in accelerators. However, the truncated Green’s function algorithm can be computationally expensive, especially for large accelerators. In this work, we present a new approach to accelerator optimization using differential algebra with the truncated Green’s function space charge algorithm. Our approach uses differential algebra to symbolically represent the equations of the truncated Green’s function algorithm. This allows us to perform efficient symbolic analysis of the equations, which can be used to identify and optimize the accelerator parameters. We demonstrate the effectiveness of our approach by applying it to the optimization of a linear accelerator. We show that our approach can significantly reduce the computational cost of the truncated Green’s function algorithm, while still achieving high accuracy.
PB  - JACoW Publishing
CP  - Geneva, Switzerland
SP  - 254
EP  - 257
KW  - space-charge
KW  - simulation
KW  - framework
KW  - multipole
KW  - operation
DA  - 2024/04
PY  - 2024
SN  - 2673-5571
SN  - 978-3-95450-253-0
DO  - doi:10.18429/JACoW-HB2023-WEA3C3
UR  - https://jacow.org/hb2023/papers/wea3c3.pdf
ER  -