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Abstract
Accelerator optimization is a critical problem in the

design of high-performance particle accelerators. The
truncated Green’s function space charge algorithm is a
powerful tool for simulating the effects of space charge
in accelerators. However, the truncated Green’s function
algorithm can be computationally expensive, especially for
large accelerators. In this work, we present a new approach
to accelerator optimization using differential algebra with
the truncated Green’s function space charge algorithm. Our
approach uses differential algebra to symbolically represent
the equations of the truncated Green’s function algorithm.
This allows us to perform efficient symbolic analysis of the
equations, which can be used to identify and optimize the
accelerator parameters. We demonstrate the effectiveness of
our approach by applying it to the optimization of a linear
accelerator. We show that our approach can significantly
reduce the computational cost of the truncated Green’s
function algorithm, while still achieving high accuracy.

INTRODUCTION
Computation of space charge fields in accelerator

simulations presents significant challenges. While many
accelerator modeling codes incorporate self-consistent
space charge solvers to track multiple particles, solving
electromagnetic or electrostatic space charge fields
self-consistently and analytically is inherently intricate.
Consequently, numerous solvers resort to Particle-in-Cell
(PIC) methods with open boundary conditions.

During accelerator optimization simulations, gradient-
free algorithms are frequently used due to the limited
availability of derivative information regarding beam
properties in relation to accelerator parameters. To address
this constraint, techniques like Differential Algebra (DA)
and Truncated Power Series Algebra (TPSA) come into play
to bridge this gap.

DA and TPSA have demonstrated their effectiveness in
calculating nonlinear maps for lattice elements and are
widely embraced in many codes. These techniques hold
particular promise in the realm of differentiable space charge
simulations, where computational efficiency is paramount
for beam dynamics simulations. Proposals for automatic
differentiation of space charge simulations using TPSA have
emerged, further augmenting their versatility.

DA techniques have become instrumental in solving
complex problems in accelerator physics. There have been
research contributions where DA methods have significantly
enhanced space charge calculations, paving the way for
innovative solutions in accelerator science. H. Zhang et
∗ kuphy@korea.ac.kr

al applied DA techniques to the Fast Multipole Method
(FMM) for space charge calculations. Their research offers
valuable insights into the effective use of DA in space charge
effect computations [1]. B. Erdelyi et al employed the
Duffy transformation method to address the Poisson equation
with Green’s functions. This transformative technique
effectively splits integrals into smaller domains, eliminating
the singularities associated with Green’s functions [2].
Recently, J. Qiang focused on using TPSA techniques to
derive local derivatives of beam properties concerning
accelerator design parameters. This study investigates the
behavior of coasting beams within a rectangular conducting
pipe [3].

Collectively, these research contributions demonstrate the
widespread adoption of DA techniques to enhance space
charge calculations. The combination of DA and related
algebraic techniques showcases the versatile and robust
nature of these methods, ultimately shaping the future of
accelerator science and simulation.

In this work, we have devised a differentiable
self-consistent space charge model, harnessing the
power of Green’s function solvers and implementing
the Vico-Greengard-Ferrando algorithms [4]. This
approach furnishes several benefits, including enhanced
computational efficiency for beam dynamics simulations
and the capability to effectively manage differentiable space
charge effects [5].

TRUNCATED SPACE CHARGE SOLVER
For a given charge distribution, 𝜌, the Poisson equation

with an open boundary condition can be expressed as:

®∇2𝜙 = − 𝜌

𝜖0
,

The general solution of the Poisson equation utilizing
Green’s function is expressed as follows:

𝜙(®𝑟) = 1
𝜖0

∫
𝐺 (®𝑟, ®𝑟 ′) 𝜌(®𝑟 ′) 𝑑3®𝑟 ′

=
1

4𝜋𝜖0

∫
1

|®𝑟 − ®𝑟 ′ | 𝜌(®𝑟
′) 𝑑3®𝑟 ′.

The inclusion of boundary conditions adds a layer of
complexity to the problem. In the context of accelerator
simulations, open boundary conditions are often the
preferred choice, particularly when the pipe radius in an
accelerator significantly exceeds the transverse size of the
beam bunch.

While the Green’s function method provides valuable
insights and computational techniques, it also presents
challenges: 1) long-range integration: addressing issues
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related to long-range integration is imperative to achieve
accurate results. 2) singularities: careful handling and
implementation are required due to singularities in the
Green’s function.

These challenges are at the forefront of considerations
when utilizing the Green’s function approach for solving
Poisson equations in accelerator simulations. The Hockney-
Eastwood (HE) algorithm is a prominent method employed
in the field of accelerator simulations, facilitating the
efficient computation of electric potentials [6]. The HE
algorithm is characterized by the following key attributes:

1. use of FFT with zero-padding: the HE algorithm
harnesses the power of FFT with zero-padding to
enhance computational efficiency. This approach
leverages the Convolution Theorem, allowing for the
rapid calculation of potentials.

2. potential calculation: the algorithm calculates the
electric potential at each mesh point (𝑝, 𝑞) as a
summation of contributions from all source points
(𝑝′, 𝑞′).

The use of Green’s function presents a powerful approach
to express the electric potential in the context of accelerator
simulations. This technique formulates the potential as the
convolution of the source distribution 𝜌 with the Green’s
function of the interaction potential𝐺. The electric potential
calculation is mathematically represented as:

𝜙(®𝑟) =
ℎ𝑥ℎ𝑦ℎ𝑧

4𝜋Y0
F −1

{∑︁
F {𝐺∧}F {𝜌∧}

}
.

Here, 𝜙(®𝑟) signifies the electric potential, ℎ𝑥 , ℎ𝑦 , and ℎ𝑧
represent grid spacing in the three spatial dimensions, and Y0
stands for the vacuum permittivity. The various components
are computed in the Fourier domain for enhanced efficiency.

The convolution method proves highly advantageous
under specific conditions in accelerator simulations.
The method effectively addresses periodic systems of
sources, accommodating arbitrary interaction forms between
particles. It is particularly suitable for scenarios where no
conductors or physical boundaries are present within the
system. The convolution method excels when the pipe radius
in an accelerator significantly exceeds the transverse size of
the beam bunch.

In the context of the HE FFT method, certain limitations
must be considered. The HE FFT method traditionally relies
on Green’s function with a long-range definition, introducing
singularities at points where ®𝑟 = ®𝑟 ′. These singularities can
pose challenges in accurate computations.

To address the limitations of the HE FFT method, the
concept of a truncated spectral kernel is introduced. This
involves the transformation of the Green’s function:

𝐺 (®𝑟) → 𝐺𝐿 (®𝑟) = 𝐺 (®𝑟) · rect(®𝑟/2𝐿).

This truncated spectral kernel is applicable when the
truncation parameter 𝐿 is chosen to be greater than the square

root of the dimension of the problem (
√
𝑑). In mathematical

terms, it is valid when 𝐿 >
√
𝑑. And the indicator function

rect(𝑥) is defined as follows:

rect(𝑥) =
{

1, if 𝑥 < 1/2
0, if 𝑥 > 1/2

The truncation introduced by the spectral kernel rectifies
some of the challenges related to singularities and long-range
definitions, allowing for more accurate and manageable
computations in the context of the HE FFT method.

One notable advancement in the field of accelerator
simulations is the use of analytical Green’s functions.
This approach offers key advantages that contribute to the
efficiency and accuracy of potential calculations.

One of the defining features of analytical Green’s
functions is their solvability in the Fourier domain.
Specifically, the Fourier transform of the truncated spectral
kernel, denoted as 𝐺𝐿 , can be expressed analytically as:

F {𝐺𝐿} = 2
Y0

[
sin(𝐿 | ®𝑘 |/2)

| ®𝑘 |

]2

.

The electric potential 𝜙(®𝑟) can be computed efficiently
using the analytical Green’s function. The potential
calculation is given by:

𝜙(®𝑟) = 2
(2𝜋)3Y0

∫
exp(𝑖®𝑘 ·®𝑟)

[
sin(𝐿 | ®𝑘 |/2)

| ®𝑘 |

]2

F {𝜌( ®𝑘)} 𝑑3®𝑘.

The Vico-Greengard-Ferrando (VGF) Poisson Solver
can enhance the efficiency and applicability of analytical
Green’s functions in accelerator simulations. By simplifying
potential calculations through the use of analytical Green’s
functions, this solver streamlines the computational process,
making it an invaluable tool in the realm of accelerator
physics.

The integration of analytical Green’s functions, as
facilitated by the VGF Poisson Solver, offers a significant
advancement in the field, presenting opportunities for
improved efficiency and accuracy in accelerator simulations.

For the Gaussian charge distribution, expressed as:

𝜌(®𝑟) = 𝑄

𝜎3
√︁
(2𝜋)3/2

exp
(
− 𝑟2

2𝜎2

)
,

where𝑄 represents the charge and𝜎 is the standard deviation
ot the Poisson equation, which relates the electric potential
𝜙(®𝑟) can be solved exactly. The solution is expressed as:

𝜙(®𝑟) = 𝑄

4𝜋Y0

1
𝑟

erf
(

𝑟
√

2𝜎

)
where erf represents the error function.

Efficiently representing and computing the charge
distribution necessitates the use of grid domains. In this
context, a grid domain with dimensions 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧 is
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employed. To simplify the problem, it is common to assume
equal dimensions, resulting in 𝑁 = 𝑁𝑥 = 𝑁𝑦 = 𝑁𝑧 .

The space charge potential 𝜙(®𝑟) can be also calculated
in the Fourier domain, leveraging the analytical Green’s
function. The potential calculation is given by:

𝜙(®𝑟) = 2
(2𝜋)3Y0

∫
𝑒𝑖

®𝑘 · ®𝑟

[
sin(𝐿 | ®𝑘 |/2)

| ®𝑘 |

]2

F {𝜌( ®𝑘)} 𝑑3®𝑘

The computation of the Green’s function kernel involves
several steps, including:

1. Fourier transform of the charge distribution.

2. Inverse Fourier transform of the convolution.

Efficient computation of space charge potentials often
necessitates a grid domain with sufficient granularity.
Specifically, the requirement is for a grid consisting of (4𝑁)
grid domains in each direction. This is in contrast to the HE
method, which requires only (2𝑁) grid domains.

ADVANCES IN SPACE CHARGE
CALCULATIONS USING DA AND TPSA
DA is an algebraic framework introduced by M. Berz in

1986, designed for solving complex analytical problems.
It has achieved widespread adoption in the field of
accelerator simulations. Notable accelerator simulation
codes, such as Cosy-Infinity, PTC, MAD-X PTC, Bmad,
and CHEF (MXYZPTLK), have successfully implemented
DA techniques. These codes have benefited significantly
from the application of DA, enhancing the precision and
efficiency of their simulations.

TPSA complements DA by employing truncated power
series expansions. This method approximates functions by
retaining a finite number of terms in their power series
representations. A distinctive advantage of TPSA is its
capability to generate power series with an infinite number of
terms, providing a comprehensive framework for precise and
accurate calculations. This feature makes TPSA a valuable
addition to the toolkit of accelerator physicists.

TPSA excels in handling complex mathematical
representations, ensuring the utmost precision and reliability
in the calculations. TPSA serves as a critical component
in advancing our understanding of accelerator systems and
optimizing their performance.

In the PIC method, its numerical nature inherently
introduces computational errors. Furthermore, numerical
field derivative calculations are susceptible to errors, which
can impact the overall accuracy of simulations. In pursuit of
higher precision, an alternative approach offers a solution:
the direct computation of electric fields using a convolutional
method with the truncated Green function. This method
presents a promising avenue to mitigate computational errors
that are intrinsic to PIC simulations.

Directly calculating the electric fields, the method yields
electric field components defined as follows:

Figure 1: Comparison of electric field components along
the x-axis.

®𝐸 (®𝑟) = −∇𝜙

=
2

(2𝜋)3Y0

∫ (
𝑖 ®𝑘 · ®𝑟 ′

) (
sin(𝐿 | ®𝑘 |/2)

| ®𝑘 |

)2

𝜌(®𝑟 ′) d3®𝑘.

For further enhancement in precision, TPSA techniques
enable the automatic calculation of higher-order derivatives
and provide a systematic and efficient approach to handle
such derivatives. This, in turn, allows for precise and reliable
computations of space charge field properties with respect
to beam properties.

The space charge potential, denoted as 𝜙(®𝑟), can be
expressed as a power series expansion around a reference
point ®𝑟0:

𝜙(®𝑟) =𝜙(®𝑟0) + ∇𝜙(®𝑟0) · (®𝑟 − ®𝑟0)

+ 1
2!

(®𝑟 − ®𝑟0) · ∇∇𝜙(®𝑟0) · (®𝑟 − ®𝑟0) + O(∥®𝑟 − ®𝑟0∥2)

To assess higher-order derivatives of the space charge
potential accurately and efficiently, we employ DA
techniques. Utilizing a DA vector and DA operations, we
achieve systematic differentiation of the potential function
with respect to the variables of interest.

The DA vector serves as a versatile representation of
the potential function, enabling a methodical approach to
calculate higher-order derivatives. It facilitates systematic
differentiation with respect to the variables of interest,
providing a comprehensive understanding of the space
charge potential and its associated properties.

The integration of DA techniques enhances the precision
and efficiency of space charge potential analysis. This
approach allows for a thorough exploration of space charge
potential properties and their derivatives, contributing to
a deeper understanding of accelerator systems and their
performance.

Fig. 1 illustrates a comparative analysis of electric field
components along the x-axis. Through the integration of
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DA and the use of truncated Green’s function, significant
enhancements are observed in the numerical computation
of space charge fields.

SUMMARY
In summary, the integration of Differential Algebra

(DA) techniques enhances the precision and efficiency of
space charge potential analysis. This approach allows
for a thorough exploration of space charge potential
properties and their derivatives, contributing to a deeper
understanding of accelerator systems and their performance.
Fig. 1 illustrates a comparative analysis of electric field
components along the x-axis. Through the integration of
DA and the use of truncated Green’s function, significant
enhancements are observed in the numerical computation
of space charge fields.
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