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Outline



• Challenges in Space Charge Field Computation
• Analytical Complexity: Analytical solutions for EM and ES space charge fields are intrinsically complex.
• Particle-in-Cell (PIC) Methods: Numerous solvers rely on PIC methods with open boundary conditions.

• Accelerator Optimization
• Due to limited derivative information of beam properties, gradient-free algorithms are commonly used in 

accelerator optimization simulations.

• Techniques to Address Derivative Constraints
• Differential Algebra (DA) and Truncated Power Series Algebra (TPSA) 
• DA and TPSA are effective for calculating nonlinear maps, widely adopted in accelerator codes

• Differentiable Space Charge Model
• Differentiable self-consistent space charge model based on Truncated Green's function solvers

• Advantages:
• Enhances computational efficiency for beam dynamics simulations and enables effective management of 

differentiable space charge effects.
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Introduction



• General Solution of the Poisson Equation with Green’s function

𝜙𝜙 𝑟𝑟 =
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𝜀𝜀0
�𝐺𝐺 𝑟𝑟, 𝑟𝑟′ 𝜌𝜌 𝑟𝑟′ 𝑑𝑑3𝑟𝑟′ =
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𝑟𝑟 − 𝑟𝑟′
𝜌𝜌 𝑟𝑟′ 𝑑𝑑3𝑟𝑟′

• Consideration of Boundary Conditions
• Inclusion of boundary conditions adds complexity.

• Open boundary conditions are preferred.

• This is true if the pipe radius in an accelerator is much larger than the beam bunch transverse size

• Challenges in Green's Function Approach
• Green's function offers valuable insights and computational techniques: Hockney-Eastwood Algorithm

• Long-range integration and singularities require careful consideration and implementation.
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Space Charge Solvers with Green’s Function Method



• Hockney-Eastwood Algorithm (HE):

• Utilizes Fast Fourier Transform (FFT) with zero-

padding.

• Leveraging the Convolution Theorem

• Calculation of Potential:
• Potential at mesh point (𝑝𝑝, 𝑞𝑞) as a sum of 

contributions from all source points (𝑝𝑝′, 𝑞𝑞′)

𝜙𝜙 𝑝𝑝, 𝑞𝑞 =
ℎ𝑥𝑥ℎ𝑦𝑦ℎ𝑧𝑧

4𝜋𝜋𝜀𝜀0
�𝐺𝐺 𝑝𝑝, 𝑞𝑞; 𝑝𝑝′, 𝑞𝑞′ 𝜌𝜌(𝑝𝑝′, 𝑞𝑞′)

• Using Green's Function:
• Expresses the potential as the convolution of the 

source distribution 𝜌𝜌 with the Green's function of 
the interaction potential 𝐺𝐺. 

𝜙𝜙 𝑟𝑟 =
ℎ𝑥𝑥ℎ𝑦𝑦ℎ𝑧𝑧

4𝜋𝜋𝜀𝜀0
ℱ−1 �ℱ �𝐺𝐺 ℱ �𝜌𝜌

• Applicability of the Convolution Method:
• Solves a periodic system of sources with arbitrary 

interaction forms.

• No conductors or boundaries allowed.

• Ideal for situations where the pipe radius in an 
accelerator significantly exceeds the beam bunch 
transverse size.
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Hockney-Eastwood Algorithm



• Limitation of HE FFT Method
• Utilizes Green’s function with long-range definition and 

singularities at 𝑟𝑟 = 𝑟𝑟′

• Introducing Truncated Spectral Kernel
• Transforming the Green's function: 

𝐺𝐺 𝑟𝑟 ⟹ 𝐺𝐺𝐿𝐿 𝑟𝑟 = 𝐺𝐺(𝑟𝑟)rect 𝑟𝑟
2𝐿𝐿

,

• Conditions for Truncation
• Truncated spectral kernel applies when 𝐿𝐿 > 𝑑𝑑 (with 

dimension 𝑑𝑑)

• The indicator function rect 𝑥𝑥 is defined as

rect 𝑥𝑥 = �1, 𝑥𝑥 < 1/2
0, 𝑥𝑥 > 1/2

• Analytical Green's Function
• The Fourier transform of the Green’s function is solvable 

analytically.

• Fourier Transform of 𝐺𝐺𝐿𝐿

ℱ 𝐺𝐺𝐿𝐿 =
2
𝜀𝜀0

sin
𝐿𝐿 𝑘𝑘

2
𝑘𝑘

2

• The potential:

𝜙𝜙 𝑟𝑟 =
2

(2𝜋𝜋)3𝜀𝜀0
� 𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟

sin
𝐿𝐿 𝑘𝑘

2
𝑘𝑘

2

ℱ 𝜌𝜌 𝑘𝑘 𝑑𝑑3𝑘𝑘

• Efficiency and Applicability
• The VGF Poisson Solver simplifies potential calculation with 

analytical Green's function, enhancing computational efficiency.
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Truncated Green’s Function Method

Vico-Greengard-Ferrando Poisson Solver



Benchmarking

• Gaussian Charge Distribution:

𝜌𝜌 𝑟𝑟 = 𝑄𝑄
𝜎𝜎3(2𝜋𝜋)3/2 𝑒𝑒

− 𝑟𝑟2

2𝜎𝜎2 ,

• Grid Domain

• Utilize 𝑁𝑁𝑥𝑥 × 𝑁𝑁𝑦𝑦 × 𝑁𝑁𝑧𝑧 grid domain

• Simplifying the problem: 𝑁𝑁 = 𝑁𝑁𝑥𝑥 = 𝑁𝑁𝑦𝑦 = 𝑁𝑁𝑧𝑧

• The Exact Poisson Solution:

𝜙𝜙 𝑟𝑟 =
𝑄𝑄

4𝜋𝜋𝜀𝜀0
1
𝑟𝑟

erf
𝑟𝑟
2𝜎𝜎

Implementation

• Space Charge Potential

𝜙𝜙 𝑟𝑟 =
2

(2𝜋𝜋)3𝜀𝜀0
�𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟

sin
𝐿𝐿 𝑘𝑘

2
𝑘𝑘

2

ℱ 𝜌𝜌 𝑘𝑘 𝑑𝑑3𝑘𝑘

1. Green’s function kernel computation
2. Fourier Transform of the charge distribution
3. Inverse Fourier Transform of the convolution

• Grid Domain for Efficient Computation

• (4N) grid domains are needed in each direction.

• cf. (2N) number of grid domains is needed for HE
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Implementation of Algorithms and Benchmarking
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Comparison of Space Charge Solvers

Potentials along the x-axis for a different number of grids 

N = 16 N = 32 N = 64

• With a small value of 𝑁𝑁, the Hockney-Eastwood (HE) algorithm may exhibit significant deviations, especially at the beam center.

• Increasing the value of 𝑁𝑁, this observed deviation is reduced.
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VGF vs. HE: Relative Errors

• VGF Algorithm:
• Smaller maximum and mean errors observed for small grid sizes.

• Larger minimum errors across all grid sizes.

• Maximum relative error at the grid edge.

• HE Algorithm:
• Maximum relative error occurs at the grid center.

• Opposite behavior observed for minimum relative error.

• Impact on Algorithm Accuracy
• Unlike HE, the accuracy of the VGF algorithm is not significantly 

influenced by the number of grid sizes.

• Highlighting the robustness and consistent performance of the VGF 
algorithm across different scenarios.



10/11/2023 Chong Shik Park | HB2023, October. 9-13, 2023, Geneva, Switzerland 10

Computing Time

• Challenges with Increasing Grid Count
• In the Vico-Greengard-Ferrando (VGF) algorithm, computation time shows a noticeable increase as the number of grids rises.

• Efficiency of VGF Algorithm
• Despite increased computation time with more grids, the VGF algorithm shines in its ability to achieve fast convergence with a relatively 

smaller number of grids.



• Differential Algebra (DA) and Truncated Power Series Algebra (TPSA)
• DA: Algebraic methods for analytic problem solving, introduced by M. Berz in 1986.

• Wide Adoption: Implemented in accelerator simulation codes like Cosy-Infinity, PTC, MAD-X PTC, Bmad, and 
CHEF(MXYZPTLK).

• Truncated Power Series Algebra (TPSA)
• TPSA employs truncated power series expansions.

• Approximates functions by retaining a finite number of terms in power series.

• Advantages: Generates infinite order power series, offering comprehensive and accurate calculations.

• Practical Use in Accelerator Simulations
• TPSA is a vital tool in beam dynamics analysis.

• It handles complex mathematical representations, ensuring precision and reliability.
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Differential Algebra and TPSA



• Expanding the Toolbox with TPSA Libraries
• In the realm of Differential Algebra (DA), several Truncated Power Series Algebra (TPSA) libraries have emerged 

independently.

• Utilizing TPSA Libraries for Space Charge Field Calculations
• We harnessed these TPSA libraries to implement the DA method for space charge field calculations.

• The Advantage of TPSA Libraries
• These libraries offer a remarkable advantage: they are adaptable to any aspect of accelerator simulation 

optimization.

• Their versatility and wide applicability enhance the capabilities of DA techniques.

• Notable TPSA Libraries
• TPSA-python by H. Zhang (https://github.com/zhanghe9704/tpsa)

• PyTPSA by Y. Hao (https://github.com/YueHao/PyTPSA.git)
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Differential Algebra and TPSA (Cont’d)

https://github.com/zhanghe9704/tpsa
https://github.com/YueHao/PyTPSA.git


Basic Operations in DA, 1D1

• 𝑎𝑎0,𝑎𝑎1 + 𝑏𝑏0,𝑏𝑏1 = 𝑎𝑎0 + 𝑏𝑏0,𝑎𝑎1 + 𝑏𝑏1
• 𝑐𝑐 𝑎𝑎0,𝑎𝑎1 = 𝑐𝑐𝑎𝑎0, 𝑐𝑐𝑎𝑎1
• 𝑎𝑎0,𝑎𝑎1 � 𝑏𝑏0,𝑏𝑏1 = 𝑎𝑎0𝑏𝑏0,𝑎𝑎0𝑏𝑏1 + 𝑎𝑎1𝑏𝑏0

• 𝑎𝑎0,𝑎𝑎1 −1 = 1
𝑎𝑎0

,− 𝑎𝑎1
𝑎𝑎02

• Any special functions can be decomposed into a finite 
number of vector additions and multiplications

• DA can be expanded into higher order n with multiple 
variables, v: nDv

Examples of TPSA in 1D1

• For a given function, 

• 𝑓𝑓 𝑥𝑥 = 1
𝑥𝑥+1/𝑥𝑥

• We know that 

• 𝑓𝑓′ 𝑥𝑥 = − 1−1/𝑥𝑥2

(𝑥𝑥+1/𝑥𝑥)2

• Therefore, 𝑓𝑓 3 = 3
10

,𝑓𝑓′ 3 = − 2
25

• If we use TPSA with the DA vector 𝑣𝑣 = 3,1 = 3 + (0,1)

• 𝑓𝑓 𝑣𝑣 = 𝑓𝑓 3,1 = 1
3,1 +1/ 3,1

= 3
10

,− 2
25
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Basics of Truncated Power Series Algebra



• H. Zhang et al: FMM Application (Nucl. Inst. Meth. A 645 (2011) 338-344)

• Zhang and colleagues applied DA techniques to the Fast Multipole Method (FMM) for space charge calculations.

• Their work offers valuable insights into the effective use of DA in space charge effect computations.

• Reference: Nucl. Inst. Meth. A 645 (2011) 338-344

• B. Erdelyi et al: Duffy Transformation (Comm. Comp. Phys. 17 (2015), pp 47-78)

• Erdelyi and team employed the Duffy transformation to solve the Poisson equation with Green's functions.

• This method splits integrals into smaller domains, eliminating singularities associated with Green's functions.

• J. Qiang: TPSA for Local Derivatives (Phys. Rev. Accel. Beams 26, 024601 (2023))

• J. Qiang's research focuses on using Truncated Power Series Algebra (TPSA) techniques to derive local derivatives of beam properties with 
respect to accelerator design parameters.

• Investigates coasting beam behavior within a rectangular conducting pipe.

• Collective Impact of DA Techniques

• These three research contributions collectively demonstrate how DA techniques are leveraged to enhance space charge calculations.

• They offer innovative methods and solutions that contribute to the advancement of accelerator physics.
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Advancements in SC Calculations Using DA



• PIC Method and Numerical Errors
• Particle-in-Cell (PIC) method is widely used in accelerator simulations but introduces computational errors due to its 

numerical nature.
• Numerical computation of field derivatives is also susceptible to errors.

• The Convolutional Approach
• An alternative approach involves direct field computation using a convolutional method with the truncated Green function.
• This method helps mitigate computational errors inherent in PIC simulations.

• Direct Electric Field Calculation
• With the truncated Green’s function, electric fields can be directly calculated.

𝐸𝐸 𝑟𝑟 = −∇𝜙𝜙 =
2

(2𝜋𝜋)3𝜀𝜀0
� 𝑖𝑖𝑘𝑘𝑒𝑒𝑖𝑖𝑘𝑘�𝑟𝑟′

sin
𝐿𝐿 𝑘𝑘

2
𝑘𝑘

2

ℱ 𝜌𝜌 𝑘𝑘 𝑑𝑑3𝑘𝑘

• Advantages of TPSA Techniques
• Truncated Power Series Algebra (TPSA) techniques facilitate the automatic calculation of higher-order derivatives.
• Provide a systematic and efficient approach to handle these derivatives.
• Enable precise and reliable computations of space charge field properties concerning beam properties.
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Enhancing Precision in SC Field Computations



• Space Charge Potential Expansion

𝜙𝜙 𝑟𝑟 = 𝜙𝜙 𝑟𝑟0 + ∇𝜙𝜙 𝑟𝑟0 � 𝑟𝑟 − 𝑟𝑟0 +
1
2!

𝑟𝑟 − 𝑟𝑟0 � ∇∇𝜙𝜙 𝑟𝑟0 � 𝑟𝑟 − 𝑟𝑟0 + 𝒪𝒪 𝑟𝑟 − 𝑟𝑟0 2

• Leveraging Differential Algebra (DA)
• Utilizing a DA vector and DA operations for higher-order derivative 

calculations.
• Accurate and efficient assessment of space charge potential properties 

using the truncated Green's function.

• DA Vector for Systematic Differentiation
• The DA vector represents the potential function.
• Systematic differentiation with respect to variables of interest becomes 

feasible.

• Comprehensive Understanding of Space Charge Potential
• These operations enable the calculation of derivatives of arbitrary order.
• Providing a comprehensive understanding of space charge potential and 

its associated properties.
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Advancing Space Charge Potential Analysis with DA



• Challenges in Space Charge Field Computations
• Accelerator simulations pose complex challenges in space charge field computations.

• Hockney and Eastwood's algorithm offers efficient solutions for Poisson equations with open boundaries.

• The Vico-Greengard-Ferrando (VGF) Poisson Solver
• Implementation of VGF with a truncated Green’s function method.

• Enhanced performance and accuracy in space charge field computations.

• Automatic Higher-Order Derivatives with DA
• Differential Algebra (DA) enables automatic computation of higher-order derivatives.

• Systematic and efficient analysis and optimization of accelerator systems.

• Differentiable Space Charge Model Integration
• Integration of the truncated Green's function-based model into beam dynamics optimization simulations.

• Expectations: Improved accuracy and efficiency in the optimization process.

• Optimization with Gradient: Leveraging gradient-based optimization techniques for enhanced precision.
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Summary



Thank You for Your Attention!
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