Paper | Title | Page |
---|---|---|
TUA2I1 | Xsuite: An Integrated Beam Physics Simulation Framework | 73 |
|
||
Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors. | ||
Slides TUA2I1 [4.388 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2I1 | |
About • | Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUC4C2 | Mitigating Collimation Impedance and Improving Halo Cleaning with New Optics and Settings Strategy of the HL-LHC Betatron Collimation System | 183 |
|
||
Funding: Work supported by the HL-LHC project With High Luminosity Large Hadron Collider (HL-LHC) beam intensities, there are concerns that the beam losses in the dispersion suppressors around the betatron cleaning insertion might exceed the quench limits. Furthermore, to maximize the beam lifetime it is important to reduce the impedance as much as possible. The collimators constitute one of the main sources of impedance in HL-LHC, given the need to operate with small collimator gaps. To improve this, a new optics was developed which increases the beta function in the collimation area, as well as the single pass dispersion from the primary collimators to the downstream shower absorbers. Other possible improvements from orbit bumps, to further enhance the locally generated dispersion, and from asymmetric collimator settings were also studied. The new solutions were partially tested with 6.8 TeV beams at the LHC in a dedicated machine experiment in 2022. In this paper, the new performance is reviewed and prospects for future operational deployment are discussed. |
||
Slides TUC4C2 [2.222 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4C2 | |
About • | Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEC3C3 | Simulations and Measurements of Betatron and Off-momentum Cleaning Performance in the Energy Ramp at the LHC | 279 |
|
||
The Large Hadron Collider (LHC) is equipped with a multistage collimation system that protects the machine against unavoidable beam losses at large betatron and energy offsets at all stages of operation. Dedicated validations and an understanding in simulations of the collimation performance are crucial for the energy ramp from 450 GeV to 6.8 TeV because complex changes of optics and orbit take place in this phase. Indeed, the betatron functions are reduced in all experiments for an efficient setup of the collisions at top energy. In this paper, simulations of the betatron and off-momentum cleaning during the energy ramp are presented. A particular focus is given to the off-momentum losses at the start of the ramp. The simulation results are benchmarked against experimental data, demonstrating the accuracy of the newly developed tools used for the simulations. | ||
Slides WEC3C3 [1.641 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC3C3 | |
About • | Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 19 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THAFP09 | Optimizing Beam Dynamics in LHC with Active Deep Learning | 422 |
|
||
The Dynamic Aperture (DA) is an important concept for the study of non-linear beam dynamics in a circular accelerator. It refers to the region in phase space where a particle’s motion remains bounded over a given number of turns. Understanding the features of DA is crucial for operating circular accelerators as it provides insights on non-linear beam dynamics and the phenomena affecting beam lifetime. The standard approach to calculate the DA is computationally very intensive. In our study, we aim at determining an optimal set of parameters that affect DA, like betatron tune, chromaticity, and Landau octupole strengths, using a Deep Neural Network (DNN) model. The DNN model predicts the so-called angular DA, based on simulated LHC data. To enhance its performance, we integrated the DNN model into an innovative Active Learning (AL) framework. This framework not only enables retraining and updating of the model, but also facilitates efficient data generation through smart sampling. The results demonstrate that the use of the Active Learning (AL) framework allows faster scanning of LHC ring configuration parameters without compromising the accuracy of the DA calculations. | ||
Slides THAFP09 [1.028 MB] | ||
Poster THAFP09 [6.173 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP09 | |
About • | Received ※ 01 October 2023 — Revised ※ 04 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THBP13 | Recent Developments with the New Tools for Collimation Simulations in Xsuite | 474 |
|
||
Simulations of single-particle tracking involving collimation systems need dedicated tools to perform the different tasks needed. These include the accurate description of particle-matter interactions when a tracked particle impacts a collimator jaw; a detailed aperture model to identify the longitudinal location of losses; and others. One such tool is the K2 code in SixTrack, which describes the scattering of high-energy protons in matter. This code has recently been ported into the Xsuite tracking code that is being developed at CERN. Another approach is to couple the tracking with existing tools, such as FLUKA or Geant4, that offer better descriptions of particle-matter interactions and can treat lepton and ion beams. This includes the generation of secondary particles and fragmentation when tracking ions. In addition to the development of coupling with Geant4, the SixTrack-FLUKA coupling has recently been translated and integrated into the Xsuite environment as well. In this paper, we present the ongoing development of these tools. A thorough testing of the new implementation was performed, using as case studies various collimation layout configurations for the LHC Run 3. | ||
Poster THBP13 [2.785 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP13 | |
About • | Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 23 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THBP35 | Analysis Tools for Numerical Simulations of Dynamic Aperture with Xsuite | 551 |
|
||
Recently, several efforts have been made at CERN to develop a new tracking tool, Xsuite, which is intended to be the successor to SixTrack. In this framework, analysis tools have also been prepared with the goal of providing advanced post-processing techniques for the interpretation of dynamic aperture simulations. The proposed software suite, named Xdyna, is meant to be a successor to the existing SixDesk environment. It incorporates all recent approaches developed to determine the dynamic aperture for a fixed number of turns. It also enables studying the time evolution of the dynamic aperture and the fitting of rigorous models based on the stability-time estimate provided by the Nekhoroshev theorem. These models make it possible to link the dynamic aperture to beam lifetime, and thus provide very relevant information for the actual performance of particle colliders. These tools have been applied to studies related to the luminosity upgrade of the CERN Large Hadron Collider (HL-LHC), the results of which are presented here. | ||
Poster THBP35 [0.514 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP35 | |
About • | Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 11 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THBP49 | Collimation of 400 MJ Beams at the LHC: The First Step Towards the HL-LHC Era | 603 |
|
||
Funding: Work supported by the HL-LHC project. An important upgrade programme is planned for the collimation system of the CERN Large Hadron Collider (LHC) in order to meet the challenges of the upcoming High-Luminosity LHC (HL-LHC) project. A first stage of the HL-LHC upgrade was already deployed during the last LHC Long Shutdown, offering important improvements of the collimation cleaning, a significant reduction of the impedance contribution and better cleaning of collisional debris, in particular for ion-ion collisions. This upgrade provides a critical opportunity to explore the LHC intensity limits during the LHC Run 3 and can provide crucial feedback to refine upgrade plans and operational scenarios in the HL-LHC era. This paper describes the performance of the upgraded LHC collimation system that has already enabled stored-beam energies larger than 400 MJ at the unprecedented beam energy of 6.8 TeV, and reviews further upgrade plans envisaged to reach 700 MJ beams at the HL-LHC. |
||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP49 | |
About • | Received ※ 03 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 10 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |