WEA3C —  Contributed Presentations WG B   (11-Oct-23   14:20—16:35)
Paper Title Page
WEA3C1 The Tracking Code RF-Track and Its Application 245
 
  • A. Latina
    CERN, Meyrin, Switzerland
 
  RF-Track is a CERN-developed particle tracking code that can simulate the generation, acceleration, and tracking of beams of any species through an entire accelerator, both in realistic field maps and conventional elements. RF-Track includes a large set of single-particle and collective effects: space-charge, beam-beam, beam loading in standing and travelling wave structures, short- and long-range wakefield effects, synchrotron radiation emission, multiple Coulomb scattering in materials, and particle lifetime. These effects make it the ideal tool for the simulation of high-intensity machines. RF-Track has been used for the simulation of electron linacs for medical applications, inverse-Compton-scattering sources, positron sources, protons in Linac4, and the cooling channel of a future muon collider. An overview of the code is presented, along with some significant results.  
slides icon Slides WEA3C1 [2.696 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA3C1  
About • Received ※ 26 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 12 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA3C2 Benchmarking of PATH and RF-Track in the Simulation of Linac4 249
 
  • G. Bellodi, J.-B. Lallement, A. Latina, A.M. Lombardi
    CERN, Meyrin, Switzerland
 
  A benchmarking campaign has been initiated to compare PATH and RF-Track in modelling high-intensity, low-energy hadron beams. The development of extra functionalities in RF-Track was required to handle an unbunched beam from the source and to ease the user interface. The Linac4 RFQ and downstream accelerating structures were adopted as test case scenarios. This paper will give an overview of the results obtained so far and plans for future code development.  
slides icon Slides WEA3C2 [4.809 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA3C2  
About • Received ※ 27 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEA3C3 Differential Algebra for Accelerator Optimization with Truncated Green’s Function 254
 
  • C.S. Park
    Korea University Sejong Campus, Sejong, Republic of Korea
 
  Accelerator optimization is a critical problem in the design of high-performance particle accelerators. The truncated Green’s function space charge algorithm is a powerful tool for simulating the effects of space charge in accelerators. However, the truncated Green’s function algorithm can be computationally expensive, especially for large accelerators. In this work, we present a new approach to accelerator optimization using differential algebra with the truncated Green’s function space charge algorithm. Our approach uses differential algebra to symbolically represent the equations of the truncated Green’s function algorithm. This allows us to perform efficient symbolic analysis of the equations, which can be used to identify and optimize the accelerator parameters. We demonstrate the effectiveness of our approach by applying it to the optimization of a linear accelerator. We show that our approach can significantly reduce the computational cost of the truncated Green’s function algorithm, while still achieving high accuracy.  
slides icon Slides WEA3C3 [0.772 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA3C3  
About • Received ※ 28 September 2023 — Revised ※ 11 October 2023 — Accepted ※ 14 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)