TUC3I —  Invited Presentations WG C   (10-Oct-23   14:20—16:45)
Paper Title Page
TUC3I1 Ultra-low Emittance Bunches from Laser Cooled Ion Traps for Intense Focal Points 128
 
  • S.J. Brooks
    BNL, Upton, New York, USA
 
  Laser-cooled ion traps are used to prepare groups of ions in very low temperature states, exhibiting such phenomena as Coulomb crystallization. This corresponds to very small normalized RMS emittances of 10-13–10-12 m, compared to typical accelerator ion sources in the 10-7–10-6 m range. Such bunches could potentially be focused a million times smaller, compensating for the lower number of ions per bunch. Such an ultra-low emittance source could enable high-specific-luminosity colliders where reduced beam current and apertures are needed to produce a given luminosity. Further advances needed to enable such colliders include linear, helical or ring cooling channel designs for increased bunch number or current throughput. Novel high density focal points using only a single bunch also appear possible, where the high density particles collide with themselves. At collider energies ~100 GeV, these approach the nuclear density and offer a way of studying larger quantities of neutron star matter and other custom nuclear matter in the lab.  
slides icon Slides TUC3I1 [167.328 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I1  
About • Received ※ 26 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I2 Shaping High Brightness and Fixed Target Beams with the CERN PSB Charge Exchange Injection 135
 
  • C. Bracco, S.C.P. Albright, F. Asvesta, G.P. Di Giovanni, F. Roncarolo
    CERN, Meyrin, Switzerland
 
  CERN adopted the charge exchange injection technique for the first time in the PS Booster after Long Shutdown 2. This allowed to overcome space charge limitations, tailor high brightness beams for the LHC and deliver high intensity flux of protons to the fixed target experiments. Details on the concept, physics, hardware and diagnostic tools are presented while retracing the exciting steps of the successful commissioning period and the first years of operation with this system. A look to the future is taken by explaining the next stages to achieve the ambitious Luminosity targets foreseen for the HL-LHC era.  
slides icon Slides TUC3I2 [19.053 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I2  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC3I3 Laser Stripping of H⁻ Beam 141
 
  • T.V. Gorlov, A.V. Aleksandrov, S.M. Cousineau, Y. Liu, A.R. Oguz
    ORNL, Oak Ridge, Tennessee, USA
  • N.J. Evans
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P.K. Saha
    JAEA/J-PARC, Tokai-mura, Japan
 
  Basic principles of laser assisted charge exchange injection for H⁻ ion andH0 beams are presented. Theoretical aspects of electromagnetic interaction of laser with hydrogen atom and H⁻ ions are discussed. Laser excitation, photoionizatio and interaction of atoms and ions with a strong electro-magnetic field are discussed and compared. Different techniques of LACE for stripping of high current stochastic beams are presented. The optimum parameters of LACE are estimated and compared for various ion beam energies. Experimental development of laser stripping at the SNS are reviewed. Future plans of LACE at the SNS and J-PARC are discussed.  
slides icon Slides TUC3I3 [1.790 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC3I3  
About • Received ※ 04 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 01 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)