Author: Williamson, R.E.
Paper Title Page
TUC4I2 Development of an Impedance Model for the ISIS Synchrotron and Predictions for the Head-Tail Instability 170
 
  • D.W. Posthuma de Boer, B.A. Orton, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is a pulsed, spallation neutron and muon source at the Rutherford Appleton Laboratory in the UK. The rapid cycling synchrotron which drives the facility accelerates 3·1013 protons-per-pulse from 70 to 800 MeV at 50 Hz, and delivers a mean beam power of 0.2 MW to two target stations. Beam-loss mechanisms must be understood to optimise performance and minimise equipment activation; and to develop mitigation methods for future operations and new accelerators. Substantial beam-losses are driven by a vertical head-tail instability, which has also limited beam intensity. Beam-based impedance measurements suggest the instability is driven by a low-frequency narrowband impedance, but its physical origin remains unknown. More generally, research into the nature of the instability is hindered without a detailed transverse impedance model. This paper presents a survey of vertical impedance estimates for ISIS equipment, using analytical methods, low frequency CST simulations and lab-based coil measurements. The final impedance estimate is then used as an input to a new linearised Vlasov solver, and predicted growth rates compared with previously obtained experimental results.  
slides icon Slides TUC4I2 [4.374 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4I2  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1I2 High-Intensity Studies on the ISIS RCS and Their Impact on the Design of ISIS-II 331
 
  • R.E. Williamson, D.J. Adams, H.V. Cavanagh, B.S. Kyle, D.W. Posthuma de Boer, H. Rafique, C.M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the pulsed spallation neutron and muon source at the Rutherford Appleton Laboratory in the UK. Operation centres on a rapid cycling proton synchrotron (RCS) that accelerates 3·1013 protons per pulse from 70 MeV to 800 MeV at 50 Hz, delivering a mean beam power of 0.2 MW. As a high-intensity machine, research at ISIS is predominantly focused on understanding, minimising and controlling beam-loss, which is central to sustainable machine operation. Knowledge of beam-loss mechanisms then informs the design of future high power accelerators such as ISIS-II. This paper provides an overview of the R&D studies currently underway on the ISIS RCS and how these relate to ongoing work understanding and optimising designs for ISIS-II. In particular, recent extensive investigations into observed head-tail instabilities are summarised.  
slides icon Slides THA1I2 [10.825 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1I2  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP24 RCS and Accumulator Rings Designs for ISIS II 519
 
  • D.J. Adams
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon, United Kingdom
  • H.V. Cavanagh, I.S.K. Gardner, B.S. Kyle, H. Rafique, C.M. Warsop, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is the spallation neutron source at the Rutherford Appleton Laboratory in the UK, which provides 0.2 MW of beam power via a 50 Hz, 800 MeV proton RCS. Detailed studies are now underway to find the optimal configuration for a next generation, short-pulsed neutron source that will define a major ISIS upgrade, with construction beginning ~2031. Determining the optimal specification for such a facility is the subject of an ongoing study involving neutron users, target and instrument experts. The accelerator designs being considered for the MW beam powers required, include proposals exploiting FFA rings as well as conventional accumulator and RCS rings. This paper summarises work on physics designs for the conventional rings. Details of lattice designs, injection and extraction systems, correction systems as well as detailed 3D PIC simulations used to ensure 0.1% losses and low foil hits are presented. Designs for a 0.4 to 1.2 GeV RCS and 1.2 GeV AR are outlined. Work on the next stages of the study are also summarised to benchmark and minimise predicted losses, and thus maximise the high intensity limit of designs.  
poster icon Poster THBP24 [3.231 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP24  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP59 Tomographic Longitudinal Phase Space Reconstruction of Bunch Compression at ISIS 625
 
  • B.S. Kyle, H.V. Cavanagh, A. Seville, R.E. Williamson
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ISIS is an 800 MeV, high intensity, rapid-cycling synchrotron (RCS) used as a driver for a spallation neutron and muon spectroscopy (¿SR) facility. The intensity-limited beam and RCS operation at ISIS poses significant challenges, with non-adiabatic acceleration and space charge forces resulting in distortions to the Hamiltonian longitudinal dynamics. Effective modelling of the machine and benchmarking of models with beam measurements is essential both to improving machine performance, and to the development of the proposed ISIS II facility. The tomographic principle is a well-established tool for the reconstruction of the longitudinal phase space (LPS) of synchrotron beams. Is it operationally desirable for the ISIS accelerator to provide longitudinally compressed proton beams for ¿SR instrumentation. A new bunch compression scheme has been developed and validated using tomography. A reconstruction of the LPS of the ISIS high-intensity proton beam is presented, along with accompanying benchmarking measurements and beam physics simulations.  
poster icon Poster THBP59 [0.907 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP59  
About • Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 20 October 2023 — Issued ※ 25 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)