Author: Milas, N.
Paper Title Page
TUC2C2 Evaluating PyORBIT as Unified Simulation Tool for Beam-Dynamics Modeling of the ESS Linac 102
 
  • J.F. Esteban Müller, Y. Levinsen, N. Milas, C.Z. Zlatanov
    ESS, Lund, Sweden
  • A.P. Shishlo, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  The design of the ESS proton linac was supported by the simulation code TraceWin, a closed-source commercial software for accurate multiparticle simulations. Conversely, the high-level physics applications used for beam commissioning and machine tuning rely on the Open XAL framework and its online model for fast envelope simulations. In this paper, we evaluate PyORBIT for both online modeling of the linac for machine commissioning and tuning as well as for more accurate offline simulations for beam-dynamics studies. We present the modifications done to the code to adapt it to this use case, namely porting the code to Python 3, adding an envelope tracker, and integrating with the EPICS control systems. Finally, we show the results of benchmarking PyORBIT against our current modeling tools.  
slides icon Slides TUC2C2 [0.886 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC2C2  
About • Received ※ 08 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUA3I3 ESS Normal Conducting Linac Commissioning Results 118
 
  • Y. Levinsen, M.E. Eshraqi, N. Milas, R. Miyamoto, D. Noll
    ESS, Lund, Sweden
 
  The European Spallation Source is designed to be the world’s brightest neutron source once in operation, driven by a 5 MW proton linac. The linac consists of a normal conducting front end followed by a superconducting linac. The normal conducting part has been commissioned in several stages, with the latest stage involving all but one DTL tank now in 2023. During this commissioning period, we successfully transported a 50 us pulse of the nominal 62.5 mA beam current. We will present an overview of the commissioning results, with a focus on what we achieved in this latest stage.  
slides icon Slides TUA3I3 [31.400 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA3I3  
About • Received ※ 04 October 2023 — Revised ※ 11 October 2023 — Accepted ※ 13 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP22 On Liouvillian High Power Beam Accumulation 511
 
  • J.-M. Lagniel
    GANIL, Caen, France
  • M.E. Eshraqi, N. Milas
    ESS, Lund, Sweden
 
  Funding: This work is co-funded by the European Union
It is acknowledged that the injection of high power proton beams into synchrotrons must be done using stripping injection of H⁻ beams which are accelerated by an injector, as done in many facilities worldwide such as ISIS, JPARC, SNS and CERN. However, this technique is not necessarily the only way of accumulation and in some cases might not represent the best choice. For example in the case of the ESSnuSB Accumulator Ring, accelerating the protons injecting them to the ring could represent savings in capital cost, reduced risk of losses in the linac and transfer lines and simplification to the overall project. This work presents the development of a method allowing to optimize the 4D Liouvillian accumulation of high-power proton and heavy ion beams and finishes with a discussion on the pros and cons of proton injection compared to more traditional H⁻ stripping injection method.
 
poster icon Poster THBP22 [2.126 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP22  
About • Received ※ 01 October 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRA2I4 Summary of the Commissioning and Operations and Performance Working Group for HB2023 Workshop 675
 
  • N. Milas
    ESS, Lund, Sweden
  • M. Bai
    SLAC, Menlo Park, California, USA
  • S. Wang
    IHEP, Beijing, People’s Republic of China
 
  Summary for WGD.  
slides icon Slides FRA2I4 [11.582 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-FRA2I4  
About • Received ※ 06 November 2023 — Revised ※ 09 November 2023 — Accepted ※ 17 November 2023 — Issued ※ 17 November 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)