Author: Intelisano, L.
Paper Title Page
THBP42 Longitudinal Loss of Landau Damping in Double Harmonic RF Systems below Transition Energy 575
 
  • L. Intelisano, H. Damerau, I. Karpov
    CERN, Meyrin, Switzerland
 
  Landau damping plays a crucial role in ensuring single-bunch stability in hadron synchrotrons. In the longitudinal plane, loss of Landau damping (LLD) occurs when a coherent mode of oscillation moves out of the incoherent synchrotron frequency band. The LLD threshold is studied for a purely inductive impedance below transition energy, specifically considering the common case of double harmonic RF systems operating in counter-phase at the bunch position. The additional focusing force due to beam-induced voltage distorts the potential well, ultimately collapsing the bucket. The limiting conditions for a binomial particle distribution are calculated. Furthermore, the contribution focuses on the configuration of the higher-harmonic RF system at four times the fundamental RF frequency operating in phase. In this case, the LLD threshold shows a non-monotonic behavior with a zero threshold where the derivative of the synchrotron frequency distribution is positive. The findings are obtained employing semi-analytical calculations using the MELODY code.  
poster icon Poster THBP42 [1.710 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP42  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 14 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)