Author: De Maria, R.
Paper Title Page
TUA2I1 Xsuite: An Integrated Beam Physics Simulation Framework 73
 
  • G. Iadarola, A. Abramov, X. Buffat, R. De Maria, D. Demetriadou, L. Deniau, P.D. Hermes, P. Kicsiny, P.M. Kruyt, A. Latina, S. Łopaciuk, L. Mether, K. Paraschou, T. Pieloni, G. Sterbini, F.F. Van der Veken
    CERN, Meyrin, Switzerland
  • P. Belanger
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • D. Di Croce, M. Seidel, L. van Riesen-Haupt
    EPFL, Lausanne, Switzerland
  • P.J. Niedermayer
    GSI, Darmstadt, Germany
 
  Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors.  
slides icon Slides TUA2I1 [4.388 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2I1  
About • Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUC4C2 Mitigating Collimation Impedance and Improving Halo Cleaning with New Optics and Settings Strategy of the HL-LHC Betatron Collimation System 183
 
  • B. Lindström, R. Bruce, X. Buffat, R. De Maria, L. Giacomel, P.D. Hermes, D. Mirarchi, N. Mounet, T.H.B. Persson, S. Redaelli, R. Tomás García, F.F. Van der Veken, A. Wegscheider
    CERN, Meyrin, Switzerland
 
  Funding: Work supported by the HL-LHC project
With High Luminosity Large Hadron Collider (HL-LHC) beam intensities, there are concerns that the beam losses in the dispersion suppressors around the betatron cleaning insertion might exceed the quench limits. Furthermore, to maximize the beam lifetime it is important to reduce the impedance as much as possible. The collimators constitute one of the main sources of impedance in HL-LHC, given the need to operate with small collimator gaps. To improve this, a new optics was developed which increases the beta function in the collimation area, as well as the single pass dispersion from the primary collimators to the downstream shower absorbers. Other possible improvements from orbit bumps, to further enhance the locally generated dispersion, and from asymmetric collimator settings were also studied. The new solutions were partially tested with 6.8 TeV beams at the LHC in a dedicated machine experiment in 2022. In this paper, the new performance is reviewed and prospects for future operational deployment are discussed.
 
slides icon Slides TUC4C2 [2.222 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-TUC4C2  
About • Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THA1C1 High Intensity Beam Dynamics Challenges for HL-LHC 344
 
  • N. Mounet, H. Bartosik, P. Baudrenghien, R. Bruce, X. Buffat, R. Calaga, R. De Maria, C.N. Droin, L. Giacomel, M. Giovannozzi, G. Iadarola, S. Kostoglou, B. Lindström, L. Mether, E. Métral, Y. Papaphilippou, K. Paraschou, S. Redaelli, G. Rumolo, B. Salvant, G. Sterbini, R. Tomás García
    CERN, Meyrin, Switzerland
 
  The High Luminosity (HL-LHC) project aims to increase the integrated luminosity of CERN’s Large Hadron Collider (LHC) by an order of magnitude compared to its initial design. This requires a large increase in bunch intensity and beam brightness compared to the first LHC runs, and hence poses serious collective-effects challenges, related in particular to electron cloud, instabilities from beam-coupling impedance, and beam-beam effects. Here we present the associated constraints and the proposed mitigation measures to achieve the baseline performance of the upgraded LHC machine. We also discuss the interplay of these mitigation measures with other aspects of the accelerator, such as the physical and dynamic aperture, machine protection, magnet imperfections, optics, and the collimation system.  
slides icon Slides THA1C1 [3.385 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1C1  
About • Received ※ 01 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 15 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP21 Increasing High Luminosity LHC Dynamic Aperture Using Optics Optimizations 507
 
  • R. De Maria, Y. Angelis, C.N. Droin, S. Kostoglou, F. Plassard, G. Sterbini, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Funding: Work supported by the HL-LHC project.
CERN’s Large Hadron Collider (LHC) is expected to operate with unprecedented beam current and brightness from the beginning of Run 4 in 2029. In the context of the High Luminosity LHC project, the baseline operational scenarios are currently being developed. They require a large octupole current and a large chromaticity throughout the entire cycle, which drives a strong reduction of dynamic aperture, in particular at injection and during the luminosity production phase. Despite being highly constrained, the LHC optics and sextupole and octupole corrector circuits still offer a few degrees of freedom that can be used to reduce resonances and the extent of the tune footprint at constant Landau damping, thereby leading to an improvement of the dynamic aperture. This contribution presents the status of the analysis that will be used to prepare the optics baseline for LHC Run 4.
 
poster icon Poster THBP21 [1.286 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP21  
About • Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP32 Xobjects and Xdeps: Low-Level Libraries Empowering Beam Dynamics Simulations 543
 
  • S. Łopaciuk, R. De Maria, G. Iadarola
    CERN, Meyrin, Switzerland
 
  Xobjects and Xdeps are Python libraries included in the Xsuite beam dynamics simulation software package. These libraries are crucial to achieving two of the main goals of Xsuite: speed and ease of use. Xobjects allows users to run simulations on various hardware in a platform-agnostic way: with little user intervention single- and multi-threading is supported as well as GPU computations using both CUDA and OpenCL. Xdeps provides support for deferred expressions in Xsuite. Relations among simulation parameters and functions driving properties of lattice elements can be defined or indeed imported from other tools such as MAD-X and then easily updated before or during the simulation.  
poster icon Poster THBP32 [0.266 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP32  
About • Received ※ 21 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 17 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)