Author: Wegner, R.
Paper Title Page
MOA1I1 Beam Performance with the LHC Injectors Upgrade 1
 
  • G. Rumolo, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, C. Antuono, T. Argyropoulos, F. Asvesta, M.J. Barnes, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, C. Bracco, N. Bruchon, E. Carlier, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, R. Garoby, S.S. Gilardoni, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, G. Iadarola, V. Kain, I. Karpov, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, E.H. Maclean, D. Manglunki, I. Mases Solé, M. Meddahi, L. Mether, B. Mikulec, E. Montesinos, Y. Papaphilippou, G. Papotti, K. Paraschou, C. Pasquino, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, F. Roncarolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, L. Sito, P.K. Skowroński, A. Spierer, R. Steerenberg, M. Sullivan, F.M. Velotti, R. Veness, C. Vollinger, R. Wegner, C. Zannini, E. de la Fuente
    CERN, Meyrin, Switzerland
  • T. Prebibaj
    IAP, Frankfurt am Main, Germany
 
  The LHC Injectors Upgrade (LIU) project was put in place between 2010 and 2021 to increase the intensity and brightness in the LHC injectors to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2040). During the 2019-2020 CERN accelerators shutdown, extensive hardware modifications were implemented in the entire LHC proton and ion injection chains, involving the new Linac4, the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the Super Proton Synchrotron (SPS) and the ion PS injectors, i.e. the Linac3 and the Low Energy Ion Ring (LEIR). Since 2021, beams have been recommissioned throughout the injectors’ chain and the beam parameters are being gradually ramped up to meet the LIU specifications using new beam dynamics solutions adapted to the upgraded accelerators. This paper focuses on the proton beams and describes the current state of the art.  
slides icon Slides MOA1I1 [10.002 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-MOA1I1  
About • Received ※ 29 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 18 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP08 Performance of the Ion Chain at the CERN Injector Complex and Transmission Studies During the 2023 Slip Stacking Commissioning 418
 
  • M. Slupecki, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, T. Argyropoulos, H. Bartosik, P. Baudrenghien, G. Bellodi, M. Bozzolan, R. Bruce, C. Carli, J. Cenede, H. Damerau, A. Frassier, D. Gamba, G. Hagmann, A. Huschauer, V. Kain, G. Khatri, D. Küchler, A. Lasheen, K.S.B. Li, E. Mahner, G. Papotti, G. Piccinini, A. Rey, M. Schenk, R. Scrivens, A. Spierer, G. Tranquille, D. Valuch, F.M. Velotti, R. Wegner
    CERN, Meyrin, Switzerland
  • E. Waagaard
    EPFL, Lausanne, Switzerland
 
  The 2023 run has been decisive for the LHC Ion Injector Complex. It demonstrated the capability of producing full trains of momentum slip stacked lead ions in the SPS. Slip stacking is a technique of interleaving particle trains, reducing the bunch spacing in SPS from 100 ns to 50 ns. It is needed to reach the total ion intensity requested by the HL-LHC project, as defined by updated common LIU/HL-LHC target beam parameters. This paper reviews the lead beam characteristics across the Ion Injector Complex, including transmission efficiencies up to the SPS extraction. It also documents the difficulties found during the commissioning and the solutions put in place.  
slides icon Slides THAFP08 [1.114 MB]  
poster icon Poster THAFP08 [1.995 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP08  
About • Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 21 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP38 Two-Dimensional Longitudinal Painting at Injection into the CERN PS Booster 563
 
  • S.C.P. Albright, F. Asvesta, B. Bielawski, C. Bracco, P.K. Skowroński, R. Wegner
    CERN, Meyrin, Switzerland
 
  To inject highest beam intensities at the transfer from Linac4 into the four rings of the PS Booster (PSB) at CERN, protons must be accumulated during up to 148 turns in total. With the conventional, fixed chopping pattern this process results in an approximately rectangular distribution in the longitudinal phase space. As the bucket shape in the PSB does not correspond to this distribution, the process leads to longitudinal mismatch, contributing to emittance growth and reduced transmission. The field in the last accelerating cavity of Linac4 can be modulated, which leads to fine corrections of the extracted beam energy. At the same time, the chopping pattern can be varied. Combining both allows injecting a near uniform longitudinal distribution whose boundary corresponds to an iso-Hamiltonian contour of the RF bucket, hence significantly reducing mismatch. In an operational context, the longitudinal painting must be controlled in a way that allows easy intensity variation, and can even require different painting configurations for each of the four PSB rings. This contribution presents the first demonstration of longitudinal painting in the PSB, and its impact on beam performance.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP38  
About • Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 24 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)