Author: Varnasseri, S.
Paper Title Page
WEC4C2 Multiharmonic Buncher for the Isolde Superconducting Recoil Separator Project 321
 
  • J.L. Muñoz, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, S. Varnasseri
    ESS Bilbao, LEIOA, Spain
  • I. Martel
    University of Huelva, Huelva, Spain
 
  Funding: This work has been supported by the European Union ¿NextGenerationEU program
The ISOLDE Superconducting Recoil Separator (ISRS) is a proposal of building a very compact separator ring as an instrument in the HIE-ISOLDE facility. The injection of the HIE-ISOLDE beam into this ring requires a more compact bunch structure, so a Multi-Harmonic Buncher device is proposed for this task. The MHB will operate at a frequency of 10.128 MHz, which is a 10% of the linac frequency, and would be installed before the RFQ. The MHB is desgined as a two electrodes system, and the MHB signal, composed for the first four harmonics of the fundamental frequency, is fed into the electrodes that are connected to the central conductor of a coaxial waveguides. The full design of the MHB is presented, including electromagnetic optimization of the electrode shape, optimization of the weights of each of the harmonic contribution, mechanical and thermal design of the structure. The RF generation and electronics to power up the device are also presented. A solution that generates directly the composed signal andis then amplified by a solid state power amplifier is also presented in this contribution.
 
slides icon Slides WEC4C2 [4.165 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C2  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP10 Stripline Design of a Fast Faraday Cup for the Bunch Length Measurement at ISOLDE-ISRS 426
 
  • S. Varnasseri, I. Bustinduy, P.J. González, R. Miracoli, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
 
  In order to measure the bunch length of the beam after Multi Harmonic Buncher (MHB) of ISOLDE Superconducting Recoil Separator (ISRS) and characterize the longitudinal structure of bunches of MHB, installation of a Fast Faraday Cup (FFC) is foreseen. Several possible structures of the fast faraday cup are studied and due to timing characteristics of the beam, a microstrip design is selected as the first option. The beam is collected on the biased collector of the microstrip with a matched impedance and transferred to the RF wideband amplification system. The amplified signal then can be analyzed on the wideband oscilloscope or acquisition system to extract the bunch length and bunch timing structure with precision. The design of the microstrip FFC and primary RF measurement of the prototype are discussed in this paper.  
slides icon Slides THAFP10 [2.832 MB]  
poster icon Poster THAFP10 [0.642 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP10  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP57 A Novel RF Power Source for the ESS-Bilbao Ion Source 621
 
  • S. Masa, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, R. Miracoli, S. Varnasseri
    ESS Bilbao, LEIOA, Spain
 
  This paper presents the improvements in the ESS Bilbao Proton Ion Source by replacing the amplified radio frequency (RF) pulse of a Klystron-based amplification system using a Solid-State Power Amplifier (SSPA). This new amplification system is based on a 1kW SSPA (2.7 GHz), a Compact-RIO (cRIO) device, a voltage-controlled RF attenuator and auxiliary electronics. The Experimental Physics and Industrial Control System (EPICS) serves as distributed control system (DCS) for controlling and monitoring the data required to achieve a 1.5 ms flat and stable pulse at repetition rate of 14 Hz. The following lines describe the structural and control system changes done in the ion source due to the addition of the SSPA-based amplification system, along with the results of the proton beam extraction tests that demonstrate how this system can serve as a viable substitute for the Klystron-based amplification system.  
poster icon Poster THBP57 [2.265 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP57  
About • Received ※ 28 September 2023 — Accepted ※ 09 October 2023 — Issued ※ 26 October 2023  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)