Paper | Title | Page |
---|---|---|
TUA2I1 | Xsuite: An Integrated Beam Physics Simulation Framework | 73 |
|
||
Xsuite is a newly developed modular simulation package combining in a single flexible and modern framework the capabilities of different tools developed at CERN in the past decades, notably Sixtrack, Sixtracklib, COMBI and PyHEADTAIL. The suite is made of a set of python modules (Xobjects, Xparts, Xtrack, Xcoll, Xfields, Xdpes) that can be flexibly combined together and with other accelerator-specific and general-purpose python tools to study complex simulation scenarios. The code allows for symplectic modeling of the particle dynamics, combined with the effect of synchrotron radiation, impedances, feedbacks, space charge, electron cloud, beam-beam, beamstrahlung, electron lenses. For collimation studies, beam-matter interaction is simulated using the K2 scattering model or interfacing Xsuite with the BDSIM/Geant4 library. Tools are available to compute the accelerator optics functions from the tracking model and to generate particle distributions matched to the optics. Different computing platforms are supported, including conventional CPUs, as well as GPUs from different vendors. | ||
Slides TUA2I1 [4.388 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-TUA2I1 | |
About • | Received ※ 30 September 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 22 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEA2C2 | Measurement of Transverse Statistical Dependence for Non-Gaussian Beam Distributions via Resonances in the CERN PSB | 231 |
|
||
This work addresses the origins and the effects of the statistical dependence in non-Gaussian beam distributions with the ultimate goal to identify the most representative case for tracking simulations across the CERN accelerator complex. Starting from the observation that non-Gaussian heavy-tailed transverse beam profiles can be reconstructed from 4D phase space distributions under two different conditions (statistical independence or dependence in the x-y plane), we consider space charge dominated beams interacting with the lattice nonlinear resonances to perform measurements to study the mechanisms that lead to non-Gaussian distributions. Finally, we explore the beam dynamics implications of the above hypotheses in terms of dependent loss processes across the transverse planes. | ||
Slides WEA2C2 [1.249 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-WEA2C2 | |
About • | Received ※ 30 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 21 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THA1C1 | High Intensity Beam Dynamics Challenges for HL-LHC | 344 |
|
||
The High Luminosity (HL-LHC) project aims to increase the integrated luminosity of CERN’s Large Hadron Collider (LHC) by an order of magnitude compared to its initial design. This requires a large increase in bunch intensity and beam brightness compared to the first LHC runs, and hence poses serious collective-effects challenges, related in particular to electron cloud, instabilities from beam-coupling impedance, and beam-beam effects. Here we present the associated constraints and the proposed mitigation measures to achieve the baseline performance of the upgraded LHC machine. We also discuss the interplay of these mitigation measures with other aspects of the accelerator, such as the physical and dynamic aperture, machine protection, magnet imperfections, optics, and the collimation system. | ||
Slides THA1C1 [3.385 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THA1C1 | |
About • | Received ※ 01 October 2023 — Revised ※ 10 October 2023 — Accepted ※ 12 October 2023 — Issued ※ 15 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THBP21 | Increasing High Luminosity LHC Dynamic Aperture Using Optics Optimizations | 507 |
|
||
Funding: Work supported by the HL-LHC project. CERN’s Large Hadron Collider (LHC) is expected to operate with unprecedented beam current and brightness from the beginning of Run 4 in 2029. In the context of the High Luminosity LHC project, the baseline operational scenarios are currently being developed. They require a large octupole current and a large chromaticity throughout the entire cycle, which drives a strong reduction of dynamic aperture, in particular at injection and during the luminosity production phase. Despite being highly constrained, the LHC optics and sextupole and octupole corrector circuits still offer a few degrees of freedom that can be used to reduce resonances and the extent of the tune footprint at constant Landau damping, thereby leading to an improvement of the dynamic aperture. This contribution presents the status of the analysis that will be used to prepare the optics baseline for LHC Run 4. |
||
Poster THBP21 [1.286 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP21 | |
About • | Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 31 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |