Author: Munoz, J.L.    [Muñoz, J.L.]
Paper Title Page
WEC4C2 Multiharmonic Buncher for the Isolde Superconducting Recoil Separator Project 321
 
  • J.L. Muñoz, I. Bustinduy, P.J. González, A. Kaftoosian, L.C. Medina, S. Varnasseri
    ESS Bilbao, LEIOA, Spain
  • I. Martel
    University of Huelva, Huelva, Spain
 
  Funding: This work has been supported by the European Union ¿NextGenerationEU program
The ISOLDE Superconducting Recoil Separator (ISRS) is a proposal of building a very compact separator ring as an instrument in the HIE-ISOLDE facility. The injection of the HIE-ISOLDE beam into this ring requires a more compact bunch structure, so a Multi-Harmonic Buncher device is proposed for this task. The MHB will operate at a frequency of 10.128 MHz, which is a 10% of the linac frequency, and would be installed before the RFQ. The MHB is desgined as a two electrodes system, and the MHB signal, composed for the first four harmonics of the fundamental frequency, is fed into the electrodes that are connected to the central conductor of a coaxial waveguides. The full design of the MHB is presented, including electromagnetic optimization of the electrode shape, optimization of the weights of each of the harmonic contribution, mechanical and thermal design of the structure. The RF generation and electronics to power up the device are also presented. A solution that generates directly the composed signal andis then amplified by a solid state power amplifier is also presented in this contribution.
 
slides icon Slides WEC4C2 [4.165 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-WEC4C2  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 27 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAFP10 Stripline Design of a Fast Faraday Cup for the Bunch Length Measurement at ISOLDE-ISRS 426
 
  • S. Varnasseri, I. Bustinduy, P.J. González, R. Miracoli, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
 
  In order to measure the bunch length of the beam after Multi Harmonic Buncher (MHB) of ISOLDE Superconducting Recoil Separator (ISRS) and characterize the longitudinal structure of bunches of MHB, installation of a Fast Faraday Cup (FFC) is foreseen. Several possible structures of the fast faraday cup are studied and due to timing characteristics of the beam, a microstrip design is selected as the first option. The beam is collected on the biased collector of the microstrip with a matched impedance and transferred to the RF wideband amplification system. The amplified signal then can be analyzed on the wideband oscilloscope or acquisition system to extract the bunch length and bunch timing structure with precision. The design of the microstrip FFC and primary RF measurement of the prototype are discussed in this paper.  
slides icon Slides THAFP10 [2.832 MB]  
poster icon Poster THAFP10 [0.642 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THAFP10  
About • Received ※ 28 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 11 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP01 ESS-Bilbao RFQ Power Coupler: Design, Simulations and Tests 433
 
  • I. Bustinduy, A. Conde, D. Fernández-Cañoto, N. Garmendia, P.J. González, G. Harper, A. Kaftoosian, J. Martin, J.L. Muñoz
    ESS Bilbao, Zamudio, Spain
  • A.P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  ESS-Bilbao RFQ power coupler is presented. The RFQ operates at 352.2 MHz and will accelerate the 32 mA proton beam extracted from the ion source up to 3.0MeV. The RFQ will complete the ESS-Bilbao injector, that can be used by the ARGITU neutron source or as a stand-alone facility. The machining of the RFQ is finished, and vacuum tests as well as low power RF measurements have been carried out. The presented power coupler is a first iteration of the device, designed to be of easier and faster manufacturing than what might be needed for future upgrades of the linac. The coupler does not have active cooling and no brazing has been needed to assemble it. It can operate at the RF power required by the RFQ but at lower duty cycles. The dielectric window is made of polymeric material, so it can withhold the assembly using vacuum seals and bolts. Design and manufacturing issues are reported in the paper, as well as the RF tests that have been carried out at medium power. Multipacting calculations compared to measured values during conditioning are also reported. High power tests of the coupler have also been performed in the ISIS-FETS RFQ and are also described here.  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP01  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 11 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBP03 ESS-Bilbao RFQ Static Tuning Algorithm and Simulation 440
 
  • J.L. Muñoz, I. Bustinduy, A. Conde, N. Garmendia, P.J. González, J. Martin, V. Toyos
    ESS Bilbao, Derio, Spain
 
  The ESS-Bilbao RFQ operates at 352.2 MHz. The machining of the four RFQ segments has finished and the assembly and tuning operations will follow shorly. The static tuning and field flatness are provided by an array of 60 plunger tuners, distributed along the 3.2 meters length of the structure. There are four tuners per segment per quadrant, except for one of the segments where the ports are used by the power couplers. A bead-pull setup will provide the measurements of the field profiles, that will be collected in a matrix built up with the contributions of individual tuners. The conventional approach of inverting the matrix to get the optimum tuners distribution is explored, as well as additional optimization method. Particularly, a genetic optimization algorithm provides a very succesful tuning of the RFQ. The solution provided by this approach will be used as the initial configuration of the tuners before the bead-pull measurements are carried out. Additionally, static and dynamic tuning of the RFQ is studied by high performance computing simulations of the RFQ. The analysis of the in-house computational electromagnetics suite used for these tasks is also discussed in this paper.  
poster icon Poster THBP03 [2.285 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-HB2023-THBP03  
About • Received ※ 29 September 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 28 October 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)