Paper | Title | Page |
---|---|---|
WEC2I2 |
Operational Performance with FRIB Liquid Lithium and Carbon Charge Strippers | |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661, the State of Michigan and Michigan State University The charge stripping of a primary beam in heavy ion accelerators is an essential process to achieve a high beam energy at targets. The Facility for Rare Isotope Beams (FRIB), which aims at achieving an ultimate primary beam power of 400 kW, has charge strippers where the primary beam energy reaches 17-20 MeV/u in the driver linac. Because of the unprecedented intensity of heavy ion beams to achieve the 400 kW power, ultra-high thermal load and radiation damage to the charge stripping material will make it practically useless if a solid is used. To overcome these challenges, FRIB chose liquid lithium as a revolutionary stripper material, which is a superior heat remover and free from radiation damage. FRIB¿s liquid lithium charge stripper (LLCS) produces a liquid lithium thin film flowing at 60 m/s, which gives a relatively flat film with a thickness of 10-20 ¿m (0.5-1.0 mg/cm2). We also have a carbon foil charge stripper (CCS), which is a carbon foil that rotates and moves vertically to spread thermal and radiation damage. We have demonstrated that both the CCS and LLCS can support 5-kW-at-target Xe primary beam operations. We will discuss their performance in this paper. |
||
Slides WEC2I2 [2.135 MB] | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THC1I2 | FRIB Beam Power Ramp-up: Status and Plans | 351 |
|
||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661. After project completion on scope, on cost, and ahead of schedule, the Facility for Rare Isotope Beams began operations for scientific users in May of 2022. The ramp-up to a beam power of 400 kW is planned over a six-year period; 1 kW was delivered for initial user runs from in 2022, and 5 kW was delivered as of February 2023. Test runs with 10 kW 36Ar and 48Ca beams were conducted in July 2023. Upgrade plans include doubling the primary-beam energy to 400 MeV/nucleon for enhanced discovery potential (¿FRIB 400¿). This talk reports on the strategic plans towards high power operations emphasizing challenges and resolutions in beam-interception devices and targetry systems, radiation protection and controls, and legacy system renovation and integration. |
||
Slides THC1I2 [4.065 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-HB2023-THC1I2 | |
About • | Received ※ 01 October 2023 — Revised ※ 09 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 30 October 2023 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |