Paper |
Title |
Page |
MOA1I1 |
Beam Performance with the LHC Injectors Upgrade |
1 |
|
- G. Rumolo, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, C. Antuono, T. Argyropoulos, F. Asvesta, M.J. Barnes, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, C. Bracco, N. Bruchon, E. Carlier, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, R. Garoby, S.S. Gilardoni, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, G. Iadarola, V. Kain, I. Karpov, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, E.H. Maclean, D. Manglunki, I. Mases Solé, M. Meddahi, L. Mether, B. Mikulec, E. Montesinos, Y. Papaphilippou, G. Papotti, K. Paraschou, C. Pasquino, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, F. Roncarolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, L. Sito, P.K. Skowroński, A. Spierer, R. Steerenberg, M. Sullivan, F.M. Velotti, R. Veness, C. Vollinger, R. Wegner, C. Zannini, E. de la Fuente
CERN, Meyrin, Switzerland
- T. Prebibaj
IAP, Frankfurt am Main, Germany
|
|
|
The LHC Injectors Upgrade (LIU) project was put in place between 2010 and 2021 to increase the intensity and brightness in the LHC injectors to match the challenging requirements of the High-Luminosity LHC (HL-LHC) project, while ensuring reliable operation of the injectors complex up to the end of the HL-LHC era (ca. 2040). During the 2019-2020 CERN accelerators shutdown, extensive hardware modifications were implemented in the entire LHC proton and ion injection chains, involving the new Linac4, the Proton Synchrotron Booster (PSB), the Proton Synchrotron (PS), the Super Proton Synchrotron (SPS) and the ion PS injectors, i.e. the Linac3 and the Low Energy Ion Ring (LEIR). Since 2021, beams have been recommissioned throughout the injectors’ chain and the beam parameters are being gradually ramped up to meet the LIU specifications using new beam dynamics solutions adapted to the upgraded accelerators. This paper focuses on the proton beams and describes the current state of the art.
|
|
|
Slides MOA1I1 [10.002 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-MOA1I1
|
|
About • |
Received ※ 29 September 2023 — Revised ※ 05 October 2023 — Accepted ※ 09 October 2023 — Issued ※ 18 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THBP14 |
LHC Optics Measurements from Transverse Damper for the High Intensity Frontier |
479 |
|
- T. Nissinen, F.S. Carlier, M. Le Garrec, E.H. Maclean, T.H.B. Persson, R. Tomás García, A. Wegscheider
CERN, Meyrin, Switzerland
|
|
|
Current and future accelerator projects are pushing the brightness and intensity frontier, creating new challenges for turn-by-turn based optics measurements. Transverse oscillations are limited in amplitude due to particle losses. The LHC Transverse Damper (ADT) is capable of generating low amplitude ac-dipole like transverse coherent beam oscillations. While the amplitude of such excitations is low, it is compensated by the excitation length of the ADT which, in theory, can last for up to 48h. Using the ADT, it is possible to use the maximum BPM acquisition length and improve the spectral resolution. First optics measurements have been performed using the ADT in the LHC in 2023, and the results are presented in this paper. Furthermore, some observed limitations of this method are presented and their impact on ADT studies are discussed.
|
|
|
Poster THBP14 [2.632 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-THBP14
|
|
About • |
Received ※ 01 October 2023 — Revised ※ 08 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 25 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THBP15 |
Optimizing Resonance Driving Terms Using MAD-NG Parametric Maps |
483 |
|
- L. Deniau, S. Kostoglou, E.H. Maclean, K. Paraschou, T.H.B. Persson, R. Tomás García
CERN, Meyrin, Switzerland
|
|
|
In 2023, a review of the LHC octupolar resonance driving terms at injection was carried out, motivated by two observations: (i) unwanted losses during the injection process with strongly powered octupoles and (ii) an expected reduction in emittance growth from e-cloud effects in simulations with weaker octupolar resonances. The MAD-NG code was used to simultaneously optimise the main octupolar resonances: 4Qx, 4Qy, and 2Qx-2Qy by adjusting 16 quadrupole families and 16 octupole families, for a total of 32 parameters. These knobs were introduced as parameters in the transfer map, allowing the Jacobian required by the optimiser to be calculated in a single pass, saving 32 additional optics evaluations and avoiding finite difference approximations. Constraints on tunes, amplitude detuning and optics around the machine were also considered as part of the optimisation process. This paper reviews the parametric optimisation with MAD-NG and compares the results with MADX-PTC.
|
|
|
Poster THBP15 [0.938 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-THBP15
|
|
About • |
Received ※ 02 October 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 17 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THBP16 |
Emittance Growth From Electron Clouds Forming in the LHC Arc Quadrupoles |
487 |
|
- K. Paraschou, H. Bartosik, L. Deniau, G. Iadarola, E.H. Maclean, L. Mether, Y. Papaphilippou, G. Rumolo, R. Tomás García
CERN, Meyrin, Switzerland
- T. Pieloni, J.M.B. Potdevin
EPFL, Lausanne, Switzerland
|
|
|
Operation of the Large Hadron Collider with proton bunches spaced 25 ns apart favours the formation of electron clouds. In fact, a slow emittance growth is observed in proton bunches at injection energy (450 GeV), showing a bunch-by-bunch signature that is compatible with electron cloud effects. The study of these effects is particularly relevant in view of the planned HL-LHC upgrade, which relies on significantly increased beam intensity and brightness. Particle tracking simulations that take into account both electron cloud effects and the non-linear magnetic fields of the lattice suggest that the electron clouds forming in the arc quadrupoles are responsible for the observed degradation. In this work, the simulation results are studied to gain insight into the mechanism which drives the slow emittance growth. Finally, it is discussed how optimising the optics of the lattice can allow the mitigation of such effects.
|
|
|
Poster THBP16 [3.432 MB]
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-THBP16
|
|
About • |
Received ※ 29 September 2023 — Revised ※ 06 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 11 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|
THBP20 |
Optics for Landau Damping with Minimized Octupolar Resonances in the LHC |
503 |
|
- R. Tomás García, F.S. Carlier, L. Deniau, J. Dilly, J. Keintzel, S. Kostoglou, M. Le Garrec, E.H. Maclean, K. Paraschou, T.H.B. Persson, F. Soubelet, A. Wegscheider
CERN, Meyrin, Switzerland
|
|
|
Operation of the Large Hadron Collider (LHC) requires strong octupolar magnetic fields to suppress coherent beam instabilities. The amplitude detuning that is generated by these octupolar magnetic fields brings the tune of individual particles close to harmful resonances, which are mostly driven by the octupolar fields themselves. In 2023, new optics were deployed in the LHC at injection with optimized betatronic phase advances to minimize the resonances from the octupolar fields without affecting the amplitude detuning. This paper reports on the optics design, commissioning and the lifetime measurements performed to validate the optics.
|
|
DOI • |
reference for this paper
※ doi:10.18429/JACoW-HB2023-THBP20
|
|
About • |
Received ※ 01 October 2023 — Revised ※ 07 October 2023 — Accepted ※ 10 October 2023 — Issued ※ 23 October 2023 |
Cite • |
reference for this paper using
※ BibTeX,
※ LaTeX,
※ Text/Word,
※ RIS,
※ EndNote (xml)
|
|
|